5 research outputs found
Study of Pumping Capacity of Pitched Blade Impellers
A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń) of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input) and the impeller pumping effect (impeller pumping capacity). It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances) than for blending miscible liquids in mixing (higher impeller off bottom clearances)
Pumping Capacity of Pitched Blade Impellers in a Tall Vessel with a Draught Tube
A study was made of the pumping capacity of pitched blade impellers (two, three, four, five and six blade pitched blade impellers with pitch angles α = 35° and 45°) coaxially located in a cylindrical pilot plant vessel with cylindrical draught tube provided with a standard dished bottom. The draught tube was equipped with four equally spaced radial baffles above the impeller pumping liquid upwards towards the liquid surface. In all investigated cases the liquid aspect ratio H/T = 1.2 - 1.5, the draught tube / vessel diameter ratios DT /T = 0.2 and 0.4 and the impeller / draught tube diameter ratio D/DT = 0.875. The pumping capacity of the impeller was calculated from the radial profile of the axial component of the mean velocity in the draught tube below the impeller at such an axial distance from the impeller that the rotor does not affect the vorticity of the flow. The mean velocity was measured using a laser Doppler anemometer with forward scatter mode in a transparent draught tube and a transparent vessel of diameter T = 400 mm. Two series of experiments were performed, both of them under a turbulent regime of flow of the agitated liquid. First, the optimum height of the dished bottom was sought, and then the dependences of the dimensionless flow rate criterion and the impeller power number on the number of impeller blades were determined for both pitch angles tested under conditions of optimum ratio HT /DT. It follows from the results of the experiments that the optimum ratio HT /DT = 0.25 when the cross sectional areas of the horizontal flow around the bottom and the vertical inflow to the draught tube are the same. For all the tested pitched blade impellers the impeller power number when α = 45° exceeds the value of this quantity when pitch angle α = 35°, while the flow rate number when α = 35° exceeds this quantity when α = 45°. On the other hand, the absolute values of the impeller power number when the draught tube was introduced correspond fairly well to the dimensionless impeller power input measured in a system without a draught tube. However, the absolute values of the flow rate number found in the former system are significantly lower than the dimensionless impeller pumping capacity determined in the latter system. The hydraulic efficiency of pitched blade impellers N3Qp/Po for the investigated geometry of the agitated systems does not depend on the number of impeller blades, but it is significantly lower than the quantity determined in an agitated system with a dished bottom but without the draught tube
Study of Pumping Capacity of Pitched Blade Impellers
A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń) of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input) and the impeller pumping effect (impeller pumping capacity). It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances) than for blending miscible liquids in mixing (higher impeller off bottom clearances)
Pumping Capacity of Pitched Blade Impellers in a Tall Vessel with a Draught Tube
<p>A study was made of the pumping capacity of pitched blade impellers (two, three, four, five and six blade pitched blade impellers with pitch angles α = 35° and 45°) coaxially located in a cylindrical pilot plant vessel with cylindrical draught tube provided with a standard dished bottom. The draught tube was equipped with four equally spaced radial baffles above the impeller pumping liquid upwards towards the liquid surface. In all investigated cases the liquid aspect ratio H/T = 1.2 - 1.5, the draught tube / vessel diameter ratios DT /T = 0.2 and 0.4 and the impeller / draught tube diameter ratio D/DT = 0.875. The pumping capacity of the impeller was calculated from the radial profile of the axial component of the mean velocity in the draught tube below the impeller at such an axial distance from the impeller that the rotor does not affect the vorticity of the flow. The mean velocity was measured using a laser Doppler anemometer with forward scatter mode in a transparent draught tube and a transparent vessel of diameter T = 400 mm.</p> <p>Two series of experiments were performed, both of them under a turbulent regime of flow of the agitated liquid. First, the optimum height of the dished bottom was sought, and then the dependences of the dimensionless flow rate criterion and the impeller power number on the number of impeller blades were determined for both pitch angles tested under conditions of optimum ratio HT /DT. It follows from the results of the experiments that the optimum ratio HT /DT = 0.25 when the cross sectional areas of the horizontal flow around the bottom and the vertical inflow to the draught tube are the same. For all the tested pitched blade impellers the impeller power number when α = 45° exceeds the value of this quantity when pitch angle α = 35°, while the flow rate number when α = 35° exceeds this quantity when α = 45°. On the other hand, the absolute values of the impeller power number when the draught tube was introduced correspond fairly well to the dimensionless impeller power input measured in a system without a draught tube. However, the absolute values of the flow rate number found in the former system are significantly lower than the dimensionless impeller pumping capacity determined in the latter system. The hydraulic efficiency of pitched blade impellers N<sup>3</sup>Qp/Po for the investigated geometry of the agitated systems does not depend on the number of impeller blades, but it is significantly lower than the quantity determined in an agitated system with a dished bottom but without the draught tube.</p