2 research outputs found

    Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference

    No full text
    Melanoma-derived small extracellular vesicles (sEVs) participate in tumor pathogenesis. Tumor pathogenesis is highly dependent on inflammatory processes. Given the potential for melanoma sEVs to carry tumor biomarkers, we explored the hypothesis that they may contain inflammation-related mRNA content. Biophysical characterization showed that human primary melanocyte-derived sEVs trended toward being smaller and having less negative (more neutral) zeta potential than human melanoma sEVs (A-375, SKMEL-28, and C-32). Using primary melanocyte sEVs as the control population, RT-qPCR array results demonstrated similarities and differences in gene expression between melanoma sEV types. Upregulation of pro-angiogenic chemokine ligand CXCL1, CXCL2, and CXCL8 mRNAs in A-375 and SKMEL-28 melanoma sEVs was the most consistent finding. This paralleled increased production of CXCL1, CXCL2, and CXCL8 proteins by A-375 and SKMEL-28 sEV source cells. Overall, the use of primary melanocyte sEVs as a control sEV reference population facilitated the detection of inflammation-related melanoma sEV mRNA content

    MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2,3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4,5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist—4-IPP [4,6–9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333) published by Yaddanapudi et al. (2015) in Cancer Immunology Research [10]. Keywords: Melanoma, MDSC, MIF, Immunesuppression, Trancriptome analysi
    corecore