2 research outputs found

    Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic

    No full text
    The paper studies the problem of assessing the vehicle energy efficiency on the streets of urban road network. As a result of morphological analysis of the system “Vehicle—Traffic flow—Road—Traffic Environment” 18 significant morphological attributes of its functional elements, that affect the energy efficiency of vehicles, were identified. Each attribute is characterized by 3–6 implementation variants, which are evaluated by the relevant quantitative or qualitative parameters. The energy efficiency of vehicles is determined by the criteria of their energy consumption considering the vehicle category, type of energy unit, mode of vehicle movement and adjustment factors—road, climatic and others. The input parameters values of the system in the process of traffic flow on the linear fragments of streets and road networks of the cities of Ukraine and Poland were measured. The set of independent system parameters is determined by applying the Farrar-Glober method based on statistical estimates. The specified set is the basis of the studied system and is formed of 10 independent input parameters. The presence in the basis of parameters that correspond to the morphological features of all four functional elements, confirmed the importance of these elements of the system. The mathematical dependence of the impact of vehicle characteristics, traffic flow, road and environment on vehicle energy efficiency is built. The standard deviation of the model values from the tabular ones equals σ´=0.0091. Relative standard deviation equals S´r=1.5%. The results of the study could be used in the development of new and optimization of existing intelligent traffic control systems of urban transport

    Determination of Continuous Earthmoving Machinery Course Stability under the Conditions of Cyclic Lateral Loading

    No full text
    This article presents the results of complex theoretical and experimental studies on creating universal continuous earthmoving machinery operating under non-standard loading conditions, namely, cyclic lateral loading on the actuator during digging. The lateral loading is due to the complex nature of the actuator motion when digging the soil, namely, the longitudinal motion of the machinery, the actuator digging the soil, and the lateral reciprocating motion of the actuator. This allows for variable width excavations in the soil, whose width exceeds the width of the actuator. The key issue of this machinery operation is to provide its course stability. The article considers the choice of soil-developing actuator and shows the developed calculation schemes of external loading on the operating equipment and a base tractor when digging long excavations in the soil. The dependencies to define external forces acting on the actuator when digging the soil and determining the machinery course stability, considering their spatial nature, have been developed and suggested for practical use. The conditions to ensure the stability of the course of universal earthmoving machinery have been formulated and substantiated. The developed method for determining course stability can be used when creating industrial samples of trenching earthmoving machinery
    corecore