2 research outputs found

    A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1

    Get PDF
    (1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine

    Treatment of human airway epithelial Calu-3 cells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene

    No full text
    Since the identification of microRNAs (miRNAs) involved in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, miRNAs known to down-regulate the expression of the CFTR and associated proteins have been investigated as potential therapeutic targets. Here we show that miR-101-3p, targeting the 3′-UTR sequence of the CFTR mRNA, can be selectively inhibited by a peptide nucleic acid (PNA) carrying a full complementary sequence. With respect to clinical relevance of microRNA targeting, it is expected that reduction in concentration of miRNAs (the anti-miRNA approach) could be associated with increasing amounts of target mRNAs. Consistently to this hypothesis, we report that PNA-mediated inhibition of miR-101-3p was accompanied by CFTR up-regulation. Next Generation Sequencing (NGS) was performed in order to verify the effects of the anti-miR-101-3p PNA on the Calu-3 miRNome. Upon inhibition of miR-101-3p we observed a fold change (FC) expression <2 of the majority of miRNAs (403/479, 84.13%), whereas we identified a list of dysregulated miRNAs, suggesting that specific miRNA inhibition (in our case miR-101-3p) might be accompanied by alteration of expression of other miRNAs, some of them known to be involved in Cystic Fibrosis (CF), such as miR-155-5p and miR-125b-5p
    corecore