9 research outputs found
Seeing with electrons
Transformative technological advances have propelled cryogenic electron microscopy (cryo-EM) to take center stage in elucidating the intricacies of the nanoscale molecular machinery of viruses, bacteria and eukaryotic cells. Continued developments hold exciting promise for structural biophysicists to move closer to their dream of visualising atomic resolution snapshots of individual molecules at work in their native cellular environment. BN/Arjen Jakobi La
Electron scattering properties of biological macromolecules and their use for cryo-EM map sharpening
Resolution-dependent loss of contrast in cryo-EM maps may obscure features at high resolution that are critical for map interpretation. Post-processing of cryo-EM maps can improve the interpretability by adjusting the resolution-dependence of structure factor amplitudes through map sharpening. Traditionally this has been done by rescaling the relative contribution of low and high-resolution frequencies globally. More recently, the realisation that molecular motion and heterogeneity cause non-uniformity of resolution throughout the map has inspired the development of techniques that optimise sharpening locally. We previously developed LocScale, a method that utilises the radial structure factor from a refined atomic model as a restraint for local map sharpening. While this method has proved beneficial for the interpretation of cryo-EM maps, the dependence on the availability of (partial) model information limits its general applicability. Here, we review the basic assumptions of resolution-dependent contrast loss in cryo-EM maps and propose a route towards a robust alternative for local map sharpening that utilises information on expected scattering properties of biological macromolecules, but requires no detailed knowledge of the underlying molecular structure. We examine remaining challenges for implementation and discuss possible applications.BN/Arjen Jakobi La
Cryo-EM structure of gas vesicles for buoyancy-controlled motility
Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Ã… cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.BN/Arjen Jakobi LabBN/BionanoscienceImPhys/Maresca groupBN/AfdelingsbureauImPhys/Medical Imagin
Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes
Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.BN/Arjen Jakobi LabBN/Technici en Analiste
Publisher Correction to Particle fusion of super-resolution data reveals the unit structure of Nup96 in Nuclear Pore Complex (Scientific Reports, (2023), 13, 1, (13327), 10.1038/s41598-023-39829-5)
Correction to: Scientific Reports, published online 16 August 2023 The original version of this Article contained an error in the upper inset of Figure 4, where the atomic model was missing. The original Figure 4 and accompanying legend appear below. (Figure presented.) Overlay of the fluorophore positions from the SMLM particle fusion data (pink) and the SNAP-tag derived from the cryo-EM data (purple). For our overall SMLM emitters (pink), the lateral distance between a unit are 9.1 nm for NR and 10.0 nm for CR. The axial distances between a unit are 2.4 nm for NR and 1.2 nm for CR. The SNAP tags (purple) have lateral distances between a unit of 11.6 nm for NR and 11.5 nm for CR as well as axial distances of 2.5 nm for NR and 2.9 nm for CR. The original Article has been corrected.ImPhys/Computational ImagingImPhys/Rieger groupBN/Arjen Jakobi LabImPhys/Imaging Physic
Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps
Cryogenic electron microscopy (cryo-EM) is a powerful technique for determining structures of multiple conformational or compositional states of macromolecular assemblies involved in cellular processes. Recent technological developments have led to a leap in the resolution of many cryo-EM data sets, making atomic model building more common for data interpretation. We present a method for calculating differences between two cryo-EM maps or a map and a fitted atomic model. The proposed approach works by scaling the maps using amplitude matching in resolution shells. To account for variability in local resolution of cryo-EM data, we include a procedure for local amplitude scaling that enables appropriate scaling of local map contrast. The approach is implemented as a user-friendly tool in the CCP-EM software package. To obtain clean and interpretable differences, we propose a protocol involving steps to process the input maps and output differences. We demonstrate the utility of the method for identifying conformational and compositional differences including ligands. We also highlight the use of difference maps for evaluating atomic model fit in cryo-EM maps.BN/Arjen Jakobi La
Improvement of Production and Isolation of Human Neuraminidase-1 in Cellulo Crystals
In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: It requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.Accepted Author ManuscriptBN/Arjen Jakobi La
Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends
Growing microtubule ends organize end-tracking proteins into comets of mixed composition. Here using a reconstituted fission yeast system consisting of end-binding protein Mal3, kinesin Tea2 and cargo Tip1, we found that these proteins can be driven into liquid-phase droplets both in solution and at microtubule ends under crowding conditions. In the absence of crowding agents, cryo-electron tomography revealed that motor-dependent comets consist of disordered networks where multivalent interactions may facilitate non-stoichiometric accumulation of cargo Tip1. We found that two disordered protein regions in Mal3 are required for the formation of droplets and motor-dependent accumulation of Tip1, while autonomous Mal3 comet formation requires only one of them. Using theoretical modelling, we explore possible mechanisms by which motor activity and multivalent interactions may lead to the observed enrichment of Tip1 at microtubule ends. We conclude that microtubule ends may act as platforms where multivalent interactions condense microtubule-associated proteins into large multi-protein complexes.BN/Marileen Dogterom LabBN/AfdelingsbureauBN/Arjen Jakobi La
A cryogenic, coincident fluorescence, electron and ion beam microscope
Cryogenic electron tomography (cryo-ET) combined with sub-tomogram averaging, allows in-situ visualization and structure determination of macromolecular complexes at sub-nanometre resolution. Cryogenic focused ion beam (cryo-FIB) micromachining is used to prepare a thin lamella-shaped sample out of a frozen-hydrated cell for cryo-ET imaging, but standard cryo-FIB fabrication is blind to the precise location of the structure or proteins of interest. Fluorescence-guided focused ion beam (FIB) milling at target locations requires multiple sample transfers prone to contamination, and relocation and registration accuracy is often insufficient for 3D targeting. Here, we present in-situ fluorescence microscopy-guided FIB fabrication of a frozen-hydrated lamella to address this problem: we built a coincident 3-beam cryogenic correlative microscope by retrofitting a compact cryogenic microcooler, custom positioning stage, and an inverted widefield fluorescence microscope (FM) on an existing focused ion-beam scanning electron microscope (FIB-SEM). We show FM controlled targeting at every milling step in the lamella fabrication process, validated with transmission electron microscope (TEM) tomogram reconstructions of the target regions. The ability to check the lamella during and after the milling process results in a higher success rate in the fabrication process and will increase the throughput of fabrication for lamellae suitable for high-resolution imaging.ImPhys/Microscopy Instrumentation & TechniquesBN/Arjen Jakobi La