8,318 research outputs found

    Towards Axion Monodromy Inflation with Warped KK-Modes

    Full text link
    We present a particularly simple model of axion monodromy: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2C_2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2C_2 over the S2S^2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2S^2 shrinks to zero size both with respect to the Planck scale and the mass scale of local modes of the throat. Crucially, the S2S^2 cycle has to be shared between two throats, such that the second locus where the S2S^2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. However, the inflaton back-reaction starts to deform the geometry strongly once the field excursion approaches the Planck scale. We derive the system of differential equations required to treat this effect quantitatively. Numerical work is required to decide whether back-reaction makes the model suitable for realistic inflation. While we have to leave this crucial issue to future studies, we find it interesting that such a simple and explicit stringy monodromy model allows an originally sub-Planckian axion to go through many periods with full quantitative control before back-reaction becomes strong. Also, the mere existence of our ultra-light throat mode (with double exponentially suppressed mass) is noteworthy.Comment: 28 pages, 3 figures; v2: references added; v3: Corrected an underestimate of supergravity back-reaction in Eq. (36); results changed accordingly; added section 6 which develops the methodology for the 10d non-linear back-reaction; added reference

    Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1^{-1} from a metallic spintronic emitter

    Get PDF
    To explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields, we excite a W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm−1^{-1} and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range and on the sub-picosecond time scale.Comment: 7 pages, 4 figure

    On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs

    Get PDF
    Given a graph and a colouring of its vertices, a rainbow vertex path is a path between two vertices such that all the internal nodes of the path are coloured distinctly. A graph is rainbow vertex-connected if between every pair of vertices in the graph there exists a rainbow vertex path. We study the problem of deciding whether a given graph can be coloured using k or less colours such that it is rainbow vertex-connected. Note that every graph G needs at least diam(G)-1 colours to be rainbow vertex connected. Heggernes et al. [MFCS, 2018] conjectured that if G is a graph in which every induced subgraph has a dominating diametral path, then G can always be rainbow vertex coloured with diam(G)-1 many colours. In this work, we confirm their conjecture for chordal, bipartite and claw-free diametral path graphs. We complement these results by showing the conjecture does not hold if the condition on every induced subgraph is dropped. In fact we show that, in this case, even though diam(G) many colours are always enough, it is NP-complete to determine whether a graph with a dominating diametral path of length three can be rainbow vertex coloured with two colours

    Pion form factor and QCD sum rules: case of pseudoscalar current

    Full text link
    We present an analysis of QCD sum rules for pion form factor in next-to-leading order of perturbation theory for the case of pseudoscalar pion currents. The essential instanton contribution is reanalysed with account for present more accurate values of parameters entering Single Instanton Approximation (SIA). The theoretical curve obtained for Q^2 dependence of pion form factor is in a good agreement with existing experimental data. To calculate NLO corrections for double spectral densities we developed an effective computational technic. The details of the method together with the results for pion form factor in a more theoretically clean case of axial interpolating currents will be presented elsewhere.Comment: LaTeX file, 12 pages, 5 figures, uses axodraw.st

    Delta Self-Consistent Field as a method to obtain potential energy surfaces of excited molecules on surfaces

    Get PDF
    We present a modification of the Δ\DeltaSCF method of calculating energies of excited states, in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Δ\DeltaSCF approximation is a density functional method closely resembling standard density functional theory (DFT), the only difference being that in Δ\DeltaSCF one or more electrons are placed in higher lying Kohn-Sham orbitals, instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground state energy within standard DFT. We extend the Δ\DeltaSCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can be estimated. The method is applied to N2_2, CO and NO adsorbed on different metallic surfaces and compared to ordinary Δ\DeltaSCF without our modification, spatially constrained DFT and inverse-photoemission spectroscopy (IPES) measurements. This comparison shows that the modified Δ\DeltaSCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2_2 adsorbed on ruthenium (0001) we map out a 2-dimensional part of the potential energy surfaces in the ground state and the 2π\pi-resonance. Finally we compare the Δ\DeltaSCF approach on gas-phase N2_2 and CO, to higher accuracy methods. Excitation energies are approximated with accuracy close to that of time-dependent density functional theory, and we see very good agreement in the minimum shift of the potential energy surfaces in the excited state compared to the ground state.Comment: 11 pages, 7 figure
    • …
    corecore