43 research outputs found

    Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects

    Get PDF
    The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells

    Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound

    Get PDF
    Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations

    Correction: Differences in cutaneous melanoma treatment and patient satisfaction.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0205517.]

    Differences in cutaneous melanoma treatment and patient satisfaction.

    No full text
    Although clinical guidelines exist, the management of patients with cutaneous melanoma (CM) is a complex process that may vary between different care providers with potential dysfunctions ultimately mirrored in the overall patient satisfaction. The aim of the present study was to investigate the CM management as related to lead times, surgical quality and diagnosis communication with the hypothesis that the care may differ between providers and disparities may impact patient satisfaction. Medical records of 181 patients were retrospectively analyzed with parallel patient satisfaction evaluation by telephone interviews. Overall mean lead times from initial diagnosis until completion of all surgery and histopathology reports were 80-100 days and delays occurred at every step of the process. General practitioners performed excision biopsies faster however this was mitigated by slower histopathology processing. University level CM care showed less lag time between excision biopsy, wide local excision for thick melanomas and histopathology confirmation. University level care operated with twice the surgical margin as compared to general practitioners and non-university level specialists. Male patients had larger excision biopsy margins and significantly shorter lead times than female patients. Patient satisfaction rates were generally higher in the academic hospitals as compared to general practitioners and non-university dermatology clinics. Surprisingly, there was no correlation between lead times and patient satisfaction. Taken together, CM show substantial variation and caution should be practiced when using patient satisfaction as a quality indicator

    Identification of Novel Glycans in the Mucus Layer of Shark and Skate Skin

    No full text
    The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In this pilot study, we aimed to explore the structure and composition of shark skin mucus through histological analysis and glycan profiling. Histological examination of skin samples from Atlantic spiny dogfish (Squalus acanthias) sharks and chain catsharks (Scyliorhinus retifer) revealed distinct mucin-producing cells and a mucus layer, indicating the presence of a functional mucus layer similar to bony fish mucus albeit thinner. Glycan profiling using liquid chromatography–electrospray ionization tandem mass spectrometry unveiled a diverse repertoire of mostly O-glycans in the mucus of the two sharks as well as little skate (Leucoraja erinacea). Elasmobranch glycans differ significantly from bony fish, especially in being more sulfated, and some bear resemblance to human glycans, such as gastric mucin O-glycans and H blood group-type glycans. This study contributes to the concept of shark skin having unique properties and provides a foundation for further research into the functional roles and potential biomedical implications of shark skin mucus glycans

    A bioenergetic profile of non-transformed fibroblasts uncovers a link between death-resistance and enhanced spare respiratory capacity

    No full text
    Apoptosis-resistance and metabolic imbalances are prominent features of cancer cells. We have recently reported on populations of human fibroblasts that exhibit resistance to mitochondrial-mediated apoptosis, acquired as a result of a single genotoxic exposure. The objective of the present study was to investigate the intrinsic bioenergetic profile of the death-resistant cells, as compared to the clonogenic control cells. Therefore, we analyzed the basic bioenergetic parameters including oxygen consumption and extracellular acidification rates, coupling efficiency, and spare respiratory capacity. Our data demonstrate a strong correlation between enhanced spare respiratory capacity and death-resistance, which we postulate to be indicative of the earliest stages of carcinogenesis. © 2013 Elsevier B.V. and Mitochondria Research Society

    A bioenergetic profile of non-transformed fibroblasts uncovers a link between death-resistance and enhanced spare respiratory capacity

    No full text
    Apoptosis-resistance and metabolic imbalances are prominent features of cancer cells. We have recently reported on populations of human fibroblasts that exhibit resistance to mitochondrial-mediated apoptosis, acquired as a result of a single genotoxic exposure. The objective of the present study was to investigate the intrinsic bioenergetic profile of the death-resistant cells, as compared to the clonogenic control cells. Therefore, we analyzed the basic bioenergetic parameters including oxygen consumption and extracellular acidification rates, coupling efficiency, and spare respiratory capacity. Our data demonstrate a strong correlation between enhanced spare respiratory capacity and death-resistance, which we postulate to be indicative of the earliest stages of carcinogenesis. © 2013 Elsevier B.V. and Mitochondria Research Society
    corecore