122 research outputs found

    Improving 1D Stellar Models with 3D Atmospheres

    Full text link
    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.Comment: 4 pages, 5 figures; submitted to the conference proceedings: Seismology of the Sun and the Distant Stars 201

    Better Late Than Never: Effective Air-Borne Hearing of Toads Delayed by Late Maturation of the Tympanic Middle Ear Structures

    Get PDF
    Most vertebrates have evolved a tympanic middle ear that enables effective hearing of airborne sound on land. Although inner ears develop during the tadpole stages of toads, tympanic middle ear structures are not complete until months after metamorphosis, potentially limiting the sensitivity of post-metamorphic juveniles to sounds in their environment. We tested the hearing of five species of toads to determine how delayed ear development impairs airborne auditory sensitivity. We performed auditory brainstem recordings to test the hearing of the toads and used micro-computed tomography and histology to relate the development of ear structures to hearing ability. We found a large (14–27 dB) increase in hearing sensitivity from 900 to 2500 Hz over the course of ear development. Thickening of the tympanic annulus cartilage and full ossification of the middle ear bone are associated with increased hearing ability in the final stages of ear maturation. Thus, juvenile toads are at a hearing disadvantage, at least in the high-frequency range, throughout much of their development, because late-forming ear elements are critical to middle ear function at these frequencies. We discuss the potential fitness consequences of late hearing development, although research directly addressing selective pressures on hearing sensitivity across ontogeny is lacking. Given that most vertebrate sensory systems function very early in life, toad tympanic hearing may be a sensory development anomaly

    Sensitive High-Frequency Hearing in Earless and Partially Eared Harlequin Frogs (Atelopus)

    Get PDF
    Harlequin frogs, genus Atelopus, communicate at high frequencies despite most species lacking a complete tympanic middle ear that facilitates high-frequency hearing in most anurans and other tetrapods. Here, we tested whether Atelopus are better at sensing high-frequency acoustic sound compared with other eared and earless species in the Bufonidae family, determined whether middle ear variation within Atelopus affects hearing sensitivity and tested potential hearing mechanisms in Atelopus. We determined that at high frequencies (2000–4000 Hz), Atelopus are 10–34 dB more sensitive than other earless bufonids but are relatively insensitive to mid-range frequencies (900–1500 Hz) compared with eared bufonids. Hearing among Atelopus species is fairly consistent, evidence that the partial middle ears present in a subset of Atelopus species do not convey a substantial hearing advantage. We further demonstrate that Atelopus hearing is probably not facilitated by vibration of the skin overlying the normal tympanic membrane region or the body lung wall, leaving the extratympanic hearing pathways in Atelopus enigmatic. Together, these results show Atelopus have sensitive high-frequency hearing without the aid of a tympanic middle ear and prompt further study of extratympanic hearing mechanisms in anurans

    Individual Hearing Loss: Characterization, Modelling, Compensation Strategies

    Get PDF
    It is well-established that hearing loss does not only lead to a reduction of hearing sensitivity. Large individual differences are typically observed among listeners with hearing impairment in a wide range of suprathreshold auditory measures. In many cases, audiometric thresholds cannot fully account for such individual differences, which make it challenging to find adequate compensation strategies in hearing devices. How to characterize, model, and compensate for individual hearing loss were the main topics of the fifth International Symposium on Auditory and Audiological Research (ISAAR), held in Nyborg, Denmark, in August 2015. The following collection of papers results from some of the work that was presented and discussed at the symposium

    Adaptive Processes in Hearing

    Get PDF
    Our auditory environment is constantly changing and evolving over time, requiring us to rapidly adapt to a complex dynamic sensory input. This adaptive ability of our auditory system can be observed at different levels, from individual cell responses to complex neural mechanisms and behavior, and is essential to achieve successful speech communication, correct orientation in our full environment, and eventually survival. These adaptive processes may differ in individuals with hearing loss, whose auditory system may cope via “readapting” itself over a longer time scale to the changes in sensory input induced by hearing impairment and the compensation provided by hearing devices. These devices themselves are now able to adapt to the listener’s individual environment, attentional state, and behavior. These topics related to auditory adaptation, in the broad sense of the term, were central to the 6th International Symposium on Auditory and Audiological Research held in Nyborg, Denmark, in August 2017. The symposium addressed adaptive processes in hearing from different angles, together with a wide variety of other auditory and audiological topics. The papers in this special issue result from some of the contributions presented at the symposium

    Potential for sound sensitivity in cephalopods

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Advances in Experimental Medicine and Biology 730 (2012): 125-128, doi:10.1007/978-1-4419-7311-5_28.Hearing is a primary sense in many marine animals and we now have a reasonable understanding of what stimuli generate clear responses, the frequency range of sensitivity, expected threshold values and mecha-nisms of sound detection for several species of marine mammals and fishes (Fay 1988; Au et al. 2000). For marine invertebrates, our knowledge of hearing capabilities is relatively poor and a definition or even certainty of sound detection is not agreed upon (Webster et al. 1992) despite their magnitude of biomass and often central role in ocean ecosystems. Cephalopods (squid, cuttlefish, octopods and nautilus) are particularly interesting subjects for inver-tebrate sound detection investigations for several reasons. Ecologically, they occupy many of the same niches as sound-sensitive fish (Budelmann 1994) and may benefit from sound perception and use for the same reasons, such as to detect predators, navigate, or locate conspecifics. Squid, for example, are often the prey of loud, echolocating marine mammals (Clarke 1996), and may therefore be expected to have evolved hearing to avoid predators. Anatomically, squid have complex statocysts that are considered to serve primarily as vestibular and acceleration detectors (Nixon and Young 2003). However, statocysts may also be analogs for fish otolithic organs, detecting acoustic stimuli (Budelmann 1992). Previous studies have debated the subject of squid hearing and recently there has been a revival of research on the subject. Here, we briefly review what is known about squid sound detection, revisit hearing definitions, discuss potential squid susceptibility to anthropogenic noise and suggest potential future research direc-tions to examine squid acoustic sensitivity.2013-01-2

    Optimizing RNA structures by sequence extensions using RNAcop

    Get PDF
    A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the level of computational analyses and when the element is extracted as a transcript for experimental analysis. Here, we analyze how different flanking region lengths impact folding into a constrained structure by computing probabilities of folding for different sizes of flanking regions. Our method, RNAcop (RNA context optimization by probability), is tested on known and de novo predicted structures. In vitro experiments support the computational analysis and suggest that for a number of structures, choosing proper lengths of flanking regions is critical. RNAcop is available as web server and stand-alone software via http://rth.dk/resources/rnacop
    • …
    corecore