20 research outputs found

    The final launch: Understanding a Changed Beta Cell Dynamics in T2D through Insulin Synthesis Measurements in Vivo

    Get PDF
    This thesis is aimed at exploring beta cell function in-depth in T2D high-risk families, this includes developing and applying a novel stable isotope based test to measure in vivo insulin synthesis

    Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices

    Get PDF
    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), SI (Cau r = −0.51, P < 0.01; SA r = −0.41, P < 0.01), Φdynamic (Cau r = −0.41, P < 0.01; SA r = −0.57, P < 0.01), and Φoral (Cau r = −0.61, P < 0.01; SA r = −0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10–10.5 mmol L−1 in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0–2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83–0.98; SA 0.75–0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C-peptide and glucose in urine collected during OGTT might be used as non-invasive measures for endogenous insulin secretion and glucose tolerance state

    The Relationship of Metabolic Syndrome Traits with Beta-Cell Function and Insulin Sensitivity by Oral Minimal Model Assessment in South Asian and European Families Residing in the Netherlands

    Get PDF
    Background. There are different metabolic syndrome traits among patients with different ethnicities. Methods. We investigated this by studying 44 South Asians and 54 Europeans and classified them in three groups according to the occurrence of metabolic syndrome (MetS) and Type 2 Diabetes (T2D). Insulin sensitivity index (ISI), static, dynamic, and total beta-cell responsivity indices (Φ), and disposition indices (DIs) were calculated with the use of oral minimal model (

    Unraveling, contributing factors to the severity of postprandial hypoglycemia after gastric bypass surgery.

    Get PDF
    BACKGROUND Despite the increasing prevalence of postbariatric hypoglycemia (PBH), a late metabolic complication of bariatric surgery, our understanding of its diverse manifestations remains incomplete. OBJECTIVES To contrast parameters of glucose-insulin homeostasis in 2 distinct phenotypes of PBH (mild versus moderate hypoglycemia) based on nadir plasma glucose. SETTING University Hospital (Bern, Switzerland). METHODS Twenty-five subjects with PBH following gastric bypass surgery (age, 41 ± 12 years; body mass index, 28.1 ± 6.1kg/m2) received 75g of glucose with frequent blood sampling for glucose, insulin, C-peptide, and glucagon-like peptide 1 (GLP)-1. Based on nadir plasma glucose (</≥50mg/dL), subjects were grouped into level 1 (L1) and level 2 (L2) PBH groups. Beta-cell function (BCF), GLP-1 exposure (λ), beta-cell sensitivity to GLP-1 (π), potentiation of insulin secretion by GLP-1 (PI), first-pass hepatic insulin extraction (HE), insulin sensitivity (SI), and rate of glucose appearance (Ra) were calculated using an oral model of GLP-1 action coupled with the oral minimal model. RESULTS Nadir glucose was 43.3 ± 6.0mg/dL (mean ± standard deviation) and 60.1 ± 9.1mg/dL in L2- and L1-PBH, respectively. Insulin exposure was significantly higher in L2 versus L1 (P = .004). Mathematical modeling revealed higher BCF in L2 versus L1 (34.3 versus 18.8 10-9∗min-1; P = .003). Despite an increased GLP-1 exposure in L2 compared to L1 PBH (50.7 versus 31.9pmol∗L-1∗min∗102; P = .021), no significant difference in PI was observed (P = .204). No significant differences were observed for HE, Ra, and SI. CONCLUSIONS Our results suggest that higher insulin exposure in PBH patients with lower postprandial nadir glucose values mainly relate to a higher responsiveness to glucose, rather than GLP-1

    Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes

    Get PDF
    Transcription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk allele of the rs7903146 in the TCF7L2 gene increases the risk of type 2 dia

    Failing beta-cell adaptation in South Asian families with a high risk of type 2 diabetes

    Get PDF
    We performed an extended oral glucose tolerance test (OGTT) to investigate the relationship between early and late beta-cell response and type 2 diabetes (T2D) in families of South Asian origin and indigenous Dutch, burdened by T2D. Based on the OGTT, 22 individuals were normoglycemic, 12 glucose intolerant and 23 had T2D in the South Asian families; these numbers were 34, 12 and 18 in the Caucasian families, respectively. The OGTT had 11 blood samplings in 3.5 h for glucose, insulin and C-peptide measurements. Through early and late insulin secretion rate (ISR), the above basal glucose area-under-the-curve after glucose load (glucose disposal) and insulin sensitivity index (ISI), we obtained early and late disposition indices (DI). South Asians on average had lower ISI than Caucasians (3.8 ± 2.9 vs. 6.5 ± 4.7, respectively, P < 0.001), with rapid decline of their early and late DI between normal glucose tolerance versus impaired fasting glucose/impaired glucose tolerance (late DI; P < 0.0001). Adjusted for ISI, age, gender and waist-to-hip ratio, early ISR was significantly associated with glucose disposal in South Asians (β = 0.55[0.186; 0.920]), but not in Caucasians (β = 0.09[-0.257; 0.441]). Similarly, early ISR was strongly associated with late ISR (β = 0.71[0.291; 1.123]; R2 = 45.5 %) in South Asians, but not in Caucasians (β = 0.27[-0.035; 0.576]; R2 = 17.4 %), with significant interaction between ethnicity and early ISR (β = 0.341[0.018; 0.664]). Ordinal regression analyses confirmed that all South Asian OGTT subgroups were homogenously resistant to insulin and solely predicted by early ISR (β = -0.782[-1.922; 0.359], β = -0.020[-0.037; -0.002], respectively), while in Caucasian families both ISI and early ISR were related to glucose tolerance state (β = -0.603[-1.105; -0.101], β = -0.066[-0.105; -0.027], respectively). In South Asian individuals, rapid beta-cell deterioration might occur under insulin resistant conditions. As their early insulin response correlates strongly with both glucose disposal and late insulin response, alterations in beta-cell dynamics may give an explanation to their extreme early onset of T2D, although larger prospective studies are required

    A stable isotope method for in vivo assessment of human insulin synthesis and secretion

    Get PDF
    Aims: In vitro, beta cells immediately secrete stored but readily releasable insulin in response to a rise of glucose. During a prolonged insulin response, this is followed by newly synthesized insulin. Our aim was to develop an in vivo test to determine the ratio between readily available and newly synthesized insulin after a stimulus in humans by labelling newly synthesized insulin. Methods: A stable isotope tracer of 1.0�g 13C leucine with C-peptide as target peptide was administered 45�min prior to 75�g glucose load of a frequently blood sampled 210-min oral glucose tolerance test (OGTT). Our OGTT also encompassed collection of urine, which has a high content
    corecore