40,691 research outputs found
Number of adaptive steps to a local fitness peak
We consider a population of genotype sequences evolving on a rugged fitness
landscape with many local fitness peaks. The population walks uphill until it
encounters a local fitness maximum. We find that the statistical properties of
the walk length depend on whether the underlying fitness distribution has a
finite mean. If the mean is finite, all the walk length cumulants grow with the
sequence length but approach a constant otherwise. Experimental implications of
our analytical results are also discussed
Origin of layer dependence in band structures of two-dimensional materials
We study the origin of layer dependence in band structures of two-dimensional
materials. We find that the layer dependence, at the density functional theory
(DFT) level, is a result of quantum confinement and the non-linearity of the
exchange-correlation functional. We use this to develop an efficient scheme for
performing DFT and GW calculations of multilayer systems. We show that the DFT
and quasiparticle band structures of a multilayer system can be derived from a
single calculation on a monolayer of the material. We test this scheme on
multilayers of MoS, graphene and phosphorene. This new scheme yields
results in excellent agreement with the standard methods at a fraction of the
computation cost. This helps overcome the challenge of performing fully
converged GW calculations on multilayers of 2D materials, particularly in the
case of transition metal dichalcogenides which involve very stringent
convergence parameters
Substrate screening effects on the quasiparticle band gap and defect charge transition levels in MoS
Monolayer MoS has emerged as an interesting material for nanoelectronic
and optoelectronic devices. The effect of substrate screening and defects on
the electronic structure of MoS are important considerations in the design
of such devices. Here, we present ab initio density functional theory (DFT) and
GW calculations to study the effect of substrate screening on the quasiparticle
band gap and defect charge transition levels (CTLs) in monolayer MoS. We
find a giant renormalization to the free-standing quasiparticle band gap by 350
meV and 530 meV in the presence of graphene and graphite as substrates,
respectively. Our results are corroborated by recent experimental measurements
on these systems using scanning tunneling spectroscopy and photoluminescence
excitation spectroscopy. Sulfur vacancies are the most abundant native defects
found in MoS. We study the CTLs of these vacancies in MoS using the
DFT+GW formalism. We find (+1/0) and (0/-1) CTLs appear in the pristine band
gap of MoS. Substrate screening results in renormalization of the (0/-1)
level, with respect to the valence band maximum (VBM), by the same amount as
the gap. This results in the pinning of the (0/-1) level about 500 meV
below the conduction band minimum for the free-standing case as well as in the
presence of substrates. The (+1/0) level, on the other hand, lies less than 100
meV above the VBM for all the cases
Large amplitude oscillations in prominences
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small
amplitude oscillations” (2–3 km s−1), which are quite common, and “large-amplitude oscillations” (>20 km s−1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fastmode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology
Modeling Stem/Progenitor Cell-Induced Neovascularization and\ud Oxygenation around Solid Implants
Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O2) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O2-sensitive crystals, consisting of a polymeric capsule limited by a nano-porous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bone marrow progenitor cells (BMPC) in order to stimulate peri-implant neovascularization. The sensor provided local partial O2 pressure (pO2) using non-invasive electron paramagnetic resonance (EPR) signal measurements. A consistently higher level of per-implant oxygenation was observed in the cell-treatment case as compared to the control over a 10-week period. In order to provide a mechanistic explanation of these experimental observations, we present in this paper a mathematical model, formulated as a system of coupled partial differential equations, that simulates peri-implant vascularization. In the control case, vascularization is considered to be the result of a Foreign Body Reaction (FBR) while in the cell-treatment case, adipogenesis in response to paracrine stimuli produced by the stem cells is assumed to induce neovascularization. The model is validated by fitting numerical predictions of local pO2 to measurements from the implanted sensor. The model is then used to investigate further the potential for using stem cell treatment to enhance the vascular integration of biomedical implants. We thus demonstrate how mathematical modeling combined with experimentation can be used to infer how vasculature develops around biomedical implants in control and stem celltreated cases
Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply Imaged Systems in the CLASS Statistical Sample
The present day observations favour a universe which is flat, accelerated and
composed of matter (baryonic + dark) and of a negative
pressure component, usually referred to as dark energy or quintessence. The
Cosmic Lens All Sky Survey (CLASS), the largest radio-selected galactic mass
scale gravitational lens search project to date, has resulted in the largest
sample suitable for statistical analyses. In the work presented here, we
exploit observed image separations of the multiply imaged lensed radio sources
in the sample. We use two different tests: (1) image separation distribution
function of the lensed radio sources and (2)
{\dtheta}_{\mathrm{pred}} vs {\dtheta}_{\mathrm{obs}} as observational
tools to constrain the cosmological parameters and \Om. The results are
in concordance with the bounds imposed by other cosmological tests.Comment: 20 pages latex; Modified " Results and Discussion " section, new
references adde
Relevance of inter-composite fermion interaction to the edge Tomonaga-Luttinger liquid
It is shown that Wen's effective theory correctly describes the
Tomonaga-Luttinger liquid at the edge of a system of non-interacting composite
fermions. However, the weak residual interaction between composite fermions
appears to be a relevant perturbation. The filling factor dependence of the
Tomonaga-Luttinger parameter is estimated for interacting composite fermions in
a microscopic approach and satisfactory agreement with experiment is achieved.
It is suggested that the electron field operator may not have a simple
representation in the effective one dimensional theory.Comment: 5 pages; accepted in Phys. Rev. Let
A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering
We propose a simple and accurate method for computing analytically the mass
correlation function for cold dark matter and scale-free models that fits
N-body simulations over a range that extends from the linear to the strongly
non-linear regime. The method, based on the dynamical evolution of the pair
conservation equation, relies on a universal relation between the pair-wise
velocity and the smoothed correlation function valid for high and low density
models, as derived empirically from N-body simulations. An intriguing
alternative relation, based on the stable-clustering hypothesis, predicts a
power-law behavior of the mass correlation function that disagrees with N-body
simulations but conforms well to the observed galaxy correlation function if
negligible bias is assumed. The method is a useful tool for rapidly exploring a
wide span of models and, at the same time, raises new questions about large
scale structure formation.Comment: 10 pages, 3 figure
Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement System for Real Time Applications
This paper presents the development of a new algorithm for Gaussian based
color image enhancement system. The algorithm has been designed into
architecture suitable for FPGA/ASIC implementation. The color image enhancement
is achieved by first convolving an original image with a Gaussian kernel since
Gaussian distribution is a point spread function which smoothen the image.
Further, logarithm-domain processing and gain/offset corrections are employed
in order to enhance and translate pixels into the display range of 0 to 255.
The proposed algorithm not only provides better dynamic range compression and
color rendition effect but also achieves color constancy in an image. The
design exploits high degrees of pipelining and parallel processing to achieve
real time performance. The design has been realized by RTL compliant Verilog
coding and fits into a single FPGA with a gate count utilization of 321,804.
The proposed method is implemented using Xilinx Virtex-II Pro XC2VP40-7FF1148
FPGA device and is capable of processing high resolution color motion pictures
of sizes of up to 1600x1200 pixels at the real time video rate of 116 frames
per second. This shows that the proposed design would work for not only still
images but also for high resolution video sequences.Comment: 15 pages, 15 figure
- …