35 research outputs found

    Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture

    Get PDF
    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology

    Elucidating the impact of microbial community biodiversity on pharmaceutical biotransformation during wastewater treatment

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146445/1/mbt212870.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146445/2/mbt212870_am.pd

    Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 6 (2015): 8933, doi:10.1038/ncomms9933.Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling.his project is funded in part by the Gordon and Betty Moore Foundation Grant GBMF2609, National Science Foundation Grants OCE1038006 (G.J.D.) and OCE-1038055 (J.A.B), National Natural Science Foundation of China (grant no. 41506163), Natural Science Foundation of Guangdong Province (grant no. 2014A030310056), Shenzhen City (grant no. JCY20140828163633985 and KQCX2015032416053646) and SZU (grant no. 000066) (M.L.

    Airborne Bacteria in Earth's Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC)

    Get PDF
    Airborne microorganisms in the upper troposphere and lower stratosphere remain elusive due to a lack of reliable sample collection systems. To address this problem, we designed, installed, and flight-validated a novel Aircraft Bioaerosol Collector (ABC) for NASA's C-20A that can make collections for microbiological research investigations up to altitudes of 13.7 km. Herein we report results from the first set of science flights—four consecutive missions flown over the United States (US) from 30 October to 2 November, 2017. To ascertain how the concentration of airborne bacteria changed across the tropopause, we collected air during aircraft Ascent/Descent (0.3 to 11 km), as well as sustained Cruise altitudes in the lower stratosphere (~12 km). Bioaerosols were captured on DNA-treated gelatinous filters inside a cascade air sampler, then analyzed with molecular and culture-based characterization. Several viable bacterial isolates were recovered from flight altitudes, including Bacillus sp., Micrococcus sp., Arthrobacter sp., and Staphylococcus sp. from Cruise samples and Brachybacterium sp. from Ascent/Descent samples. Using 16S V4 sequencing methods for a culture-independent analysis of bacteria, the average number of total OTUs was 305 for Cruise samples and 276 for Ascent/Descent samples. Some taxa were more abundant in the flight samples than the ground samples, including OTUs from families Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae as well as the following genera: Clostridium, Mogibacterium, Corynebacterium, Bacteroides, Prevotella, Pseudomonas, and Parabacteroides. Surprisingly, our results revealed a homogeneous distribution of bacteria in the atmosphere up to 12 km. The observation could be due to atmospheric conditions producing similar background aerosols across the western US, as suggested by modeled back trajectories and satellite measurements. However, the influence of aircraft-associated bacterial contaminants could not be fully eliminated and that background signal was reported throughout our dataset. Considering the tremendous engineering challenge of collecting biomass at extreme altitudes where contamination from flight hardware remains an ever-present issue, we note the utility of using the stratosphere as a proving ground for planned life detection missions across the solar system

    Infectious mononucleosis presenting as upper airway obstruction.

    No full text
    Upper airway obstruction though a common complication of infectious mononucleosis is rarely considered in differential diagnosis of stridor. We report a three-year-old child who had upper airway obstruction due to infectious mononucleosis, managed conservatively with oxygen, intravenous fluids and steroids

    Genomic and transcriptomic resolution of organic matter utilization among deep-sea bacteria in Guaymas Basin hydrothermal plumes

    No full text
    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genome. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcacaea, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes

    Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    No full text
    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology

    Unusually late presentation of lactobezoar leading to necrotising enterocolitis in an extremely low birthweight infant

    No full text
    The present report concerns a case of unusually late presentation of lactobezoar, or inspissated milk curd obstruction, leading to necrotising enterocolitis (NEC) in an extremely low birthweight (ELBW) boy infant, born at 26 weeks gestation with a birth weight of 750 g. He deteriorated acutely on day 84 of postnatal age (corrected age 38 weeks) needing intermittent positive pressure ventilation (IPPV). Over the next 3 days he developed signs of NEC, though a radiograph showed no diagnostic features. In view of increasing abdominal distension, silent abdomen and increasing ventilatory requirements, an emergency exploratory laparotomy was performed. The laparotomy revealed inspissated milk curd obstruction in the terminal ileum. There was also a small area of NEC at the ileocaecal valve. A limited hemicolectomy was performed with creation of an ileostomy and mucous fistula. Following this procedure his clinical status improved. Feeds were reintroduced after 7 days and he was on full enteral feeds by 14 days

    Radiculomyelitic rabies: can MR imaging help?

    No full text
    Radiculomyelitic (silent) rabies and acute disseminated encephalomyelitis have similar clinical presentations but distinct management and prognostic implications. It is thus important to differentiate between the two antemortem. Because of their distinct pathologic abnormalities, MR imaging may be helpful in distinguishing between the two entities. We report a case in which MR imaging helped us to diagnose silent rabies antemortem, which was subsequently confirmed at autopsy
    corecore