22 research outputs found
SFRS7-Mediated Splicing of Tau Exon 10 Is Directly Regulated by STOX1A in Glial Cells
Background: In this study, we performed a genome-wide search for effector genes bound by STOX1A, a winged helix transcription factor recently demonstrated to be involved in late onset Alzheimer’s disease and affecting the amyloid processing pathway. Methodology/Principal Findings: Our results show that out of 218 genes bound by STOX1A as identified by chromatinimmunoprecipitation followed by sequencing (ChIP-Seq), the serine/arginine-rich splicing factor 7 (SFRS7) was found to be induced, both at the mRNA and protein levels, by STOX1A after stable transfection in glial cells. The increase in SFRS7 was followed by an increase in the 4R/3R ratios of the microtubule-associated protein tau (MAPT) by differential exon 10 splicing. Secondly, STOX1A also induced expression of total tau both at the mRNA and protein levels. Upregulation of total tau expression (SFRS7-independent) and tau exon 10 splicing (SFRS7-dependent), as shown in this study to be both affected by STOX1A, is known to have implications in neurodegeneration
Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD
BACKGROUND: A new locus for amyotrophic lateral sclerosis – frontotemporal dementia (ALS-FTD) has recently been ascribed to chromosome 9p. METHODS: We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2) and undertook mutational screening of candidate genes within this locus. RESULTS: Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X) in the intraflagellar transport 74 (IFT74) gene in family 476 (F476), but no mutation was detected within IFT74 in family 2 (F2). While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids) led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420). An additional sequence variant (G58D) was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. CONCLUSION: Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families
Discovery and characterization of LRRK2 : Gene responsible for PARK8-linked Parkinson Disease
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Clinical and positron emission tomography of Parkinson's disease caused by LRRK2
We have recently identified mutations in a gene leucine-rich repeat kinase-2 (LRRK2), which cause autosomal dominant Parkinson's disease. Here, we describe two families with autosomal dominant Parkinson's disease caused by a LRRK2 G2019S mutation. We present here a clinical description of patients, including 6-18F-fluoro-L-dopa positron emission tomography and discuss the potential implications of this mutation, which alters a conserved residue in a domain required for kinase activation
Comprehensive Screening of a North American Parkinson's Disease Cohort for LRRK2 Mutation
Background Recently, mutations in LRRK2 encoding the protein dardarin have been linked to an autosomal dominant form of parkinsonism. Objective To identify mutations causing Parkinson’s disease (PD) in a cohort of North Americans with familial PD. Methods We sequenced exons 1–51 of LRRK2 in 79 unrelated North American PD patients reporting a family history of the disease. Results One patient had a missense mutation (Thr2356Ile) while two others had the common Gly2019Ser mutation. In addition, 1 patient had a 4-bp deletion in close proximity to the exon 19 splice donor (IVS20+4delGTAA) that in vitro abrogates normal splicing. Conclusions Our observations in the 79 North American patients indicate that mutations in LRRK2 are associated with approximately 5% of PD cases with a positive family history. The results also show that G2019S represents approximately half of the LRRK2 mutations in United States PD cases with a family history of the disease. We have identified two novel mutations in LRRK2
A common LRRK2 mutation in idiopathic Parkinson's disease
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been shown to cause autosomal dominant Parkinson's disease. Few mutations in this gene have been identified. We investigated the frequency of a common heterozygous mutation, 2877510 g-->A, which produces a glycine to serine aminoacid substitution at codon 2019 (Gly2019 ser), in idiopathic Parkinson's disease. We assessed 482 patients with the disorder, of whom 263 had pathologically confirmed disease, by direct sequencing for mutations in exon 41 of LRRK2. The mutation was present in eight (1.6%) patients. We have shown that a common single Mendelian mutation is implicated in sporadic Parkinson's disease. We suggest that testing for this mutation will be important in the management and genetic counselling of patients with Parkinson's disease