32 research outputs found

    Class solutions for SABR-VMAT for high-risk prostate cancer with and without elective nodal irradiation

    Get PDF
    BACKGROUND: The purpose of this study is to find the optimal planning settings for prostate SABR-VMAT for high-risk prostate cancer patients irradiated to prostate only (PO) or prostate and pelvic lymph nodes (PPLN). METHODS: For 10 patients, plans using 6MV flattened, flattening-filter-free (FFF) 6MV (6 F) and FFF 10MV (10 F) photon beams with full and partial arc arrangements were generated and compared. The prescribed dose was 40Gy to the prostate with 25Gy to the PLN in 5 fractions. Plans were then evaluated for PTV coverage, dose fall-off, and OAR doses. The number of monitor units and the treatment delivery times were also compared. Statistical differences were evaluated using a paired sample Wilcoxon signed rank test with a significance level of 0.05%. RESULTS: A total of 150 plans were generated for this study. Acceptable PO plans were obtained using single arcs, while two arcs were necessary for PPLN. All plans were highly conformal (CI ≥1.3 and CN ≥0.90) with no significant differences in the PTV dose coverage. 6MV plans required significantly longer treatment time and had higher dose spillage compared to FFF plans. Superior plans were obtained using 10 F 300° partial arcs for PO with the lowest rectal dose, dose spillage and the shortest treatment times. For PPLN, 6 F and 10 F plans were equivalent. CONCLUSIONS: SABR-VMAT with FFF photon beams offers a clear benefit with respect to shorter treatment delivery times and reduced dose spillage. Class solutions using a single 10 F 300° arc for PO and two 10 F or 6 F partial 300° arcs for PPLN are proposed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13014-016-0730-7) contains supplementary material, which is available to authorized users

    Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life

    Get PDF
    BACKGROUND: Low-dose-rate permanent prostate brachytherapy (PPB) is an attractive treatment option for patients with localised prostate cancer with excellent outcomes. As standard CT-based post-implant dosimetry often correlates poorly with late treatment-related toxicity, this exploratory (proof of concept) study was conducted to investigate correlations between radiation − induced DNA damage biomarker levels, and acute and late bowel, urinary, and sexual toxicity. METHODS: Twelve patients treated with (125)I PPB monotherapy (145Gy) for prostate cancer were included in this prospective study. Post-implant CT based dosimetry assessed the minimum dose encompassing 90% (D(90%)) of the whole prostate volume (global), sub-regions of the prostate (12 sectors) and the near maximum doses (D(0.1cc), D(2cc)) for the rectum and bladder. Six blood samples were collected from each patient; pre-treatment, 1 h (h), 4 h, 24 h post-implant, at 4 weeks (w) and at 3 months (m). DNA double strand breaks were investigated by staining the blood samples with immunofluorescence antibodies to γH2AX and 53BP1 proteins (γH2AX/53BP1). Patient self-scored quality of life from the Expanded Prostate Cancer Index Composite (EPIC) were obtained at baseline, 1 m, 3 m, 6 m, 9 m, 1 year (y), 2y and 3y post-treatment. Spearman’s correlation coefficients were used to evaluate correlations between temporal changes in γH2AX/53BP1, dose and toxicity. RESULTS: The minimum follow up was 2 years. Population mean prostate D(90%) was 144.6 ± 12.1 Gy and rectal near maximum dose D(0.1cc) = 153.0 ± 30.8 Gy and D(2cc) = 62.7 ± 12.1 Gy and for the bladder D(0.1cc) = 123.1 ± 27.0 Gy and D(2cc) = 70.9 ± 11.9 Gy. Changes in EPIC scores from baseline showed high positive correlation between acute toxicity and late toxicity for both urinary and bowel symptoms. Increased production of γH2AX/53BP1 at 24 h relative to baseline positively correlated with late bowel symptoms. Overall, no correlations were observed between dose metrics (prostate global or sector doses) and γH2AX/53BP1 foci counts. CONCLUSIONS: Our results show that a prompt increase in γH2AX/53BP1foci at 24 h post-implant relative to baseline may be a useful measure to assess elevated risk of late RT − related toxicities for PPB patients. A subsequent investigation recruiting a larger cohort of patients is warranted to verify our findings. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13014-017-0792-1) contains supplementary material, which is available to authorized users

    Optimum imaging strategies for advanced prostate cancer: ASCO guideline

    Get PDF
    PURPOSE Provide evidence- and expert-based recommendations for optimal use of imaging in advanced prostate cancer. Due to increases in research and utilization of novel imaging for advanced prostate cancer, this guideline is intended to outline techniques available and provide recommendations on appropriate use of imaging for specified patient subgroups. METHODS An Expert Panel was convened with members from ASCO and the Society of Abdominal Radiology, American College of Radiology, Society of Nuclear Medicine and Molecular Imaging, American Urological Association, American Society for Radiation Oncology, and Society of Urologic Oncology to conduct a systematic review of the literature and develop an evidence-based guideline on the optimal use of imaging for advanced prostate cancer. Representative index cases of various prostate cancer disease states are presented, including suspected high-risk disease, newly diagnosed treatment-naïve metastatic disease, suspected recurrent disease after local treatment, and progressive disease while undergoing systemic treatment. A systematic review of the literature from 2013 to August 2018 identified fully published English-language systematic reviews with or without meta-analyses, reports of rigorously conducted phase III randomized controlled trials that compared $ 2 imaging modalities, and noncomparative studies that reported on the efficacy of a single imaging modality. RESULTS A total of 35 studies met inclusion criteria and form the evidence base, including 17 systematic reviews with or without meta-analysis and 18 primary research articles. RECOMMENDATIONS One or more of these imaging modalities should be used for patients with advanced prostate cancer: conventional imaging (defined as computed tomography [CT], bone scan, and/or prostate magnetic resonance imaging [MRI]) and/or next-generation imaging (NGI), positron emission tomography [PET], PET/CT, PET/MRI, or whole-body MRI) according to the clinical scenario

    The Movember Prostate Cancer Landscape Analysis: an assessment of unmet research needs

    Get PDF
    Prostate cancer is a heterogeneous cancer with widely varying levels of morbidity and mortality. Approaches to prostate cancer screening, diagnosis, surveillance, treatment and management differ around the world. To identify the highest priority research needs across the prostate cancer biomedical research domain, Movember conducted a landscape analysis with the aim of maximizing the effect of future research investment through global collaborative efforts and partnerships. A global Landscape Analysis Committee (LAC) was established to act as an independent group of experts across urology, medical oncology, radiation oncology, radiology, pathology, translational research, health economics and patient advocacy. Men with prostate cancer and thought leaders from a variety of disciplines provided a range of key insights through a range of interviews. Insights were prioritized against predetermined criteria to understand the areas of greatest unmet need. From these efforts, 17 research needs in prostate cancer were agreed on and prioritized, and 3 received the maximum prioritization score by the LAC: first, to establish more sensitive and speci

    Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial

    Get PDF
    Background Localised prostate cancer is commonly treated with external beam radiotherapy and moderate hypofractionation is non-inferior to longer schedules. Stereotactic body radiotherapy (SBRT) allows shorter treatment courses without impacting acute toxicity. We report 2-year toxicity findings from PACE-B, a randomised trial of conventionally fractionated or moderately hypofractionated radiotherapy versus SBRT. Methods PACE is an open-label, multicohort, randomised, controlled, phase 3 trial conducted at 35 hospitals in the UK, Ireland, and Canada. In PACE-B, men aged 18 years and older with a WHO performance status 0–2 and low-risk or intermediate-risk histologically-confirmed prostate adenocarcinoma (Gleason 4 + 3 excluded) were randomly allocated (1:1) by computerised central randomisation with permuted blocks (size four and six), stratified by centre and risk group to control radiotherapy (CRT; 78 Gy in 39 fractions over 7·8 weeks or, following protocol amendment on March 24, 2016, 62 Gy in 20 fractions over 4 weeks) or SBRT (36·25 Gy in five fractions over 1–2 weeks). Androgen deprivation was not permitted. Co-primary outcomes for this toxicity analysis were Radiation Therapy Oncology Group (RTOG) grade 2 or worse gastrointestinal and genitourinary toxicity at 24 months after radiotherapy. Analysis was by treatment received and included all patients with at least one fraction of study treatment assessed for late toxicity. Recruitment is complete. Follow-up for oncological outcomes continues. The trial is registered with ClinicalTrials.gov, NCT01584258. Findings We enrolled and randomly assigned 874 men between Aug 7, 2012, and Jan 4, 2018 (441 to CRT and 433 to SBRT). In this analysis, 430 patients were analysed in the CRT group and 414 in the SBRT group; a total of 844 (97%) of 874 randomly assigned patients. At 24 months, RTOG grade 2 or worse genitourinary toxicity was seen in eight (2%) of 381 participants assigned to CRT and 13 (3%) of 384 participants assigned to SBRT (absolute difference 1·3% [95% CI –1·3 to 4·0]; p=0·39); RTOG grade 2 or worse gastrointestinal toxicity was seen in 11 (3%) of 382 participants in the CRT group versus six (2%) of 384 participants in the SBRT group (absolute difference –1·3% [95% CI –3·9 to 1·1]; p=0·32). No serious adverse events (defined as RTOG grade 4 or worse) or treatment-related deaths were reported within the analysis timeframe. Interpretation In the PACE-B trial, 2-year RTOG toxicity rates were similar for five fraction SBRT and conventional schedules of radiotherapy. Prostate SBRT was found to be safe and associated with low rates of side-effects. Biochemical outcomes are awaited

    A novel CBCT-based method for derivation of CTV-PTV margins for prostate and pelvic lymph nodes treated with stereotactic ablative radiotherapy

    Get PDF
    Abstract Background Traditional CTV-PTV margin recipes are not generally applicable in the situation of stereotactic ablative radiotherapy (SABR) treatments of multiple target volumes with a single isocentre. In this work, we present a novel geometric method of margin derivation based on CBCT-derived anatomical data. Methods Twenty patients with high-risk localized prostate cancer were selected for retrospective review. Individual volumes of interest (prostate, prostate and seminal vesicles and pelvic lymph nodes) were delineated on five representative CBCTs and registered to the planning CT using two registration protocols: bone match or prostate-based soft tissue match. Margins were incrementally expanded around composite CTV structures until 95% overlap was achieved. Results CTV-PTV margins of 5.2, 6.5 and 7.6 mm were required for prostate, prostate and seminal vesicles and pelvic lymph nodes respectively using a prostate matching protocol. For the prostate and seminal vesicle structures, margins calculated using our method displayed good agreement with a conventional margin recipe (within ±1.0 mm). Conclusions We have presented an alternative method of CTV-PTV margin derivation that is applicable to SABR treatments with more than one isocentric target. These results have informed an institutional trial of prostate and pelvic nodal SABR in men with high-risk localized prostate cancer

    A novel tool for improving the interpretation of isotope bone scans in metastatic prostate cancer

    No full text
    OBJECTIVES: The isotope bone scan (IBS) is the gold-standard imaging modality for detecting skeletal metastases as part of prostate cancer staging. However, its clinical utility for assessing skeletal metastatic burden is limited due to the need for subjective interpretation. We designed and tested a novel custom software tool, the Metastatic Bone Scan Tool (MetsBST), aimed at improving interpretation of IBSs, and compared its performance with that of an established software programme. METHODS: We used IBS images from 62 patients diagnosed with prostate cancer and suspected bone metastases to design and implement MetsBST in MATLAB by defining thresholds used to identify the texture and size of metastatic bone lesions. The results of MetsBST were compared with those of the commercially available automated Bone Scan Index (aBSI) with regression analysis. RESULTS: There was strong agreement between the MetsBST and aBSI results (R(2) = 0.9189). In a subregional analysis, MetsBST quantified the extent of metastatic disease in multiple bone sites in patients receiving multimodality therapy (radium-223 and external beam radiotherapy) to illustrate the differences in bone metastatic response to different treatments. CONCLUSION: The results of MetsBST and the commercial software aBSI were highly consistent. MetsBST introduces novel clinical utility by its ability to differentiate between the responses of different bone metastases to multimodality therapies. ADVANCES IN KNOWLEDGE: MetsBST reduces the variability in assessment of tumour burden caused by subjective interpretation. Therefore, it is a useful aid to physicians reporting nuclear medicine scans, and may improve decision-making in the treatment of metastatic prostate cancer

    Simultaneous integrated boost (SIB)to dominant intra-prostatic lesions during extreme hypofractionation for prostate cancer: the impact of rectal spacers

    No full text
    PURPOSE: Boosting dominant intra-prostatic lesions (DILs) has the potential to increase the therapeutic ratio in prostate cancer radiotherapy. In this study, employing 5-fraction stereotactic ablative radiotherapy (SABR) volumetric modulated arc therapy (VMAT) to deliver 40 Gy to the prostate clinical target volume (CTV) while boosting the DIL up to 50 Gy was evaluated for patients before and after rectal spacer insertion. MATERIALS AND METHODS: 24 Computed Tomography (CT) scans of 12 prostate cancer patients with unfavourable intermediate or high risk prostate cancer were employed in this study. At least two treatment plans were generated for each patient to compare pre- and post-spacer insertion plans. Plans were evaluated for target coverage, organs-at-risk doses, and the achievable boost dose level. RESULTS: The CTV coverage was significantly better in plans with a spacer, V(40Gy) 98.4% versus 97.0% (p = 0.012). Using spacers significantly reduced rectal dose in all 12 patients in this study. It was possible to boost DIL to 50 Gy to without violating dose constraints in 6 of 12 patients and to 47.5 Gy in 3 patients post-spacer insertion. For 3 patients (25%) it was not possible to boost DIL above 45 Gy even with a spacer in situ. Without a spacer, for 6 patient (50%) clinically acceptable plan were only achieved when the DIL dose was lowered to 45 Gy. In five of these 6 patients the dose limiting structure was the urethra (urethra planning risk volume V(45Gy) [cc] ≤ 0.1 cc constraint). CONCLUSIONS: Clinically acceptable plans for 5 fraction SABR, 40 Gy to the prostate CTV, with a SIB to DIL (45–50 Gy) were achieved. The boost dose achieved was DIL location dependent and primarily affected by DIL’s proximity to the urethra. Compared to plans before spacer insertion, higher DIL dose were achieved with spacer in situ for 25% of the patients. Moreover, significant reduction in rectal dose and better target coverage were also achieved for all patients with spacers in situ. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13014-022-02003-8
    corecore