874 research outputs found
Repair of Sunken Floor by Integrated Approach: A Case Study
The floors and non load bearing walls of a house, having expansive black cotton soil underneath, have been repaired by two methods. A part of the damaged house floors and walls were repaired by the conventional method i.e. removing the expansive soil completely and replacing with non expansive granular material. The remaining part was repaired by integrated approach as described later by Jain and Mewade (2010). The Jain and Mewade (2010) approach consists of removing the expansive soil underneath the damaged floor by about 0.5m, making 50mm diameter, 1m deep holes at 0.75m centre to centre and filling lime slurry in the holes. The broken floor debris and non expansive soil was then filled up to the floor base level and the cement concrete floor was reconstructed. The floor constructed by removal of expansive soil by 1.5m depth in the first method and partial removal and making lime piles in the second method are performing well with no sign of settlement or unevenness any where. The paper presents the success story of one such house repaired by these methods in the year 2008. The second method requires only partial removal and replacement of problematic soil beneath the floor and therefore is fast and economical in comparison to conventional method
VEGFR3: A New Target for Antiangiogenesis Therapy?
VEGFR-3 signaling plays an important role in developmental, physiological, and pathological angiogenesis and lymphangiogenesis. Tammela et al. in Nature show that VEGFR-3, via Notch regulation, is present on endothelial tip cells and is critical to sprouting angiogenesis
Performance Assessment of Flexible Pavements: Fuzzy Evidence Theory Approach
Pavement performance evaluation is one of the most important steps of the pavement management system. It consists of identifying pavement condition according to various distresses occurs in the pavement surface. Data collection in performance assessment of road is done in several ways. An attempt has been made to address the problem and a new formalism is proposed for performance assessment of flexible pavements. Vagueness in the perception of expert for performance assessment of pavement based on techno-scientific parameters in linguistic terms for the domain base usage coupled with impression in parametric data calls for the application of fuzzy modeling. For this study fuzzy evidence theory weightage method “Dempster’s Shafer’s (D-S)” is applied to determine the Pavement Condition Distress Index (PCDI) of flexible pavement. D-S theory provides a designed framework to overcome the risk of uncertainty and ignorance. For the assessment of pavements five major structural indicators like longitudinal cracks, transverse cracks etc. and eleven major functional indicators like potholes, rutting, patching etc. are considered. Expert opinion is taken from the experts who are involved in the field of transportation engineering. Questionnaire Survey methodology has been adopted for the collection of experts opinions. Five linguistic terms are used for the same, which are, ‘Very important’, ‘Important’, ‘Average’, ‘Less important’ and ‘Not Important’. Based on PCDI, Pavement Condition Index (PCI) is calculated. The rating of flexible pavements is also done based on PCI. For the application of the model, five road segments of MIDC Chakan, Pune area is considered. PCI of all the road segments is determined by using the stated index. Based on PCI value, road segment 1 rated 5 with less PCI value and road segment 4 rated 1 with high PCI value. The defined method is also compared with the rating system given in Indian Road Congress (IRC -82-2015)
A Mathematical Model of Murine Metabolic Regulation by Leptin: Energy Balance and Defense of a Stable Body Weight
We have developed a physiologically based mathematical model, with parameters derived from published experimental data, to simulate the regulatory effects of the leptin pathway on murine energy homeostasis. Model outcomes are consistent with data reported in the literature and reproduce key characteristics of the energy regulatory system, including compensatory responses that counteract changes in body weight and the failure of this ability when the leptin pathway is disrupted. Our model revealed the possibility of multiple steady states for body weight. It also provided a unified theoretical framework for two historically antagonistic hypotheses regarding body weight regulation (“set-point” versus “settling point”). Finally, our model has identified potential avenues for future investigations.National Institutes of Health (U.S.) (grant NIH CA80124)National Institutes of Health (U.S.) (grant NIH CA85140)National Institutes of Health (U.S.) (grant NIH CA96915)National Institutes of Health (U.S.) (grant NIH CA115767
Adamantinoma: A clinicopathological review and update
Adamantinoma is a primary low-grade, malignant bone tumor that is predominantly located in the mid-portion of the tibia. The etiology of the tumor is still a matter of debate. The initial symptoms of adamantinoma are often indolent and nonspecific and depend on location and extent of the disease. Histologically, classic adamantinoma is a biphasic tumor characterized by epithelial and osteofibrous components that may be intermingled with each other in various proportions and differentiating patterns. To assure the histological diagnosis, pathologists should employ immunohistochemistry for demonstrating the sometimes sparse epithelial cell nests when the radiological features are suggestive of adamantinoma. There is paucity of compiled data over adamantinoma in the literature, hence authors tried to make a comprehensive review which must be of use to beginners and trained pathologists. Our objective is to further define the clinicoradiologic features and pathologic spectra of adamantinoma
Recommended from our members
Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells
Background: Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved. Methodology/Principal Findings: We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway. Conclusions/Significance: Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation
A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol
<p>Abstract</p> <p>Background</p> <p>Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes.</p> <p>Results</p> <p>We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC) and 3-methylcatechol (3-MC) at pilot scale. Amongst the screened strains, two strains viz. <it>Pseudomonas putida </it>strain (F1) and recombinant <it>Escherichia coli </it>expression clone (pDTG602) harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM) and 3-MC (12 mM) were obtained.</p> <p>Conclusion</p> <p>The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms <it>P. putida </it>(F1) and recombinant <it>E. coli </it>expression clone (pDTG602) may be useful for industrial application.</p
- …