55,689 research outputs found
Linear Phase Second Order Recursive Digital Integrators and Differentiators
In this paper, design of linear phase second order recursive digital integrators and differentiators is discussed. New second order integrators have been designed by using Genetic Algorithm (GA) optimization method. Thereafter, by modifying the transfer function of these integrators appropriately, new digital differentiators have been obtained. The proposed digital integrators and differentiators accurately approximate the ideal ones and have linear phase response over almost entire Nyquist frequency range. The proposed operators also outperform the existing operators in terms of both magnitude and phase response
Measuring dark energy with the shear triplet statistics
The shear triplet statistics is a geometric method to measure cosmological
parameters with observations in the weak gravitational lensing regime towards
massive haloes. Here, this proposal is considered to probe the dark energy
equation of state and its time derivative in view of future wide-field galaxy
surveys. A survey with a median redshift of nearly 0.7 and a total area of
nearly 10000 square degrees would be pretty effective in determining the dark
matter cosmological density and in putting useful constraints on the dark
energy properties.Comment: 5 pages, 3 figures, accepted for publication in MNRA
Systematic Errors in Future Weak Lensing Surveys: Requirements and Prospects for Self-Calibration
We study the impact of systematic errors on planned weak lensing surveys and
compute the requirements on their contributions so that they are not a dominant
source of the cosmological parameter error budget. The generic types of error
we consider are multiplicative and additive errors in measurements of shear, as
well as photometric redshift errors. In general, more powerful surveys have
stronger systematic requirements. For example, for a SNAP-type survey the
multiplicative error in shear needs to be smaller than 1%(fsky/0.025)^{-1/2} of
the mean shear in any given redshift bin, while the centroids of photometric
redshift bins need to be known to better than 0.003(fsky/0.025)^{-1/2}. With
about a factor of two degradation in cosmological parameter errors, future
surveys can enter a self-calibration regime, where the mean systematic biases
are self-consistently determined from the survey and only higher-order moments
of the systematics contribute. Interestingly, once the power spectrum
measurements are combined with the bispectrum, the self-calibration regime in
the variation of the equation of state of dark energy w_a is attained with only
a 20-30% error degradation.Comment: 20 pages, 9 figures, to be submitted to MNRAS. Comments are welcom
Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach
Following the semiclassical formalism of Strutinsky et al., we have obtained
the complete eigenvalue spectrum for a particle enclosed in an infinitely high
spheroidal cavity. Our spheroidal trace formula also reproduces the results of
a spherical billiard in the limit . Inclusion of repetition of each
family of the orbits with reference to the largest one significantly improves
the eigenvalues of sphere and an exact comparison with the quantum mechanical
results is observed upto the second decimal place for . The
contributions of the equatorial, the planar (in the axis of symmetry plane) and
the non-planar(3-Dimensional) orbits are obtained from the same trace formula
by using the appropriate conditions. The resulting eigenvalues compare very
well with the quantum mechanical eigenvalues at normal deformation. It is
interesting that the partial sum of equatorial orbits leads to eigenvalues with
maximum angular momentum projection, while the summing of planar orbits leads
to eigenvalues with except for L=1. The remaining quantum mechanical
eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few
spurious eigenvalues arise in these partial sums. This result establishes the
important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure
Fractional statistics in the fractional quantum Hall effect
A microscopic confirmation of the fractional statistics of the {\em
quasiparticles} in the fractional quantum Hall effect has so far been lacking.
We calculate the statistics of the composite-fermion quasiparticles at
and by evaluating the Berry phase for a closed loop
encircling another composite-fermion quasiparticle. A careful consideration of
subtle perturbations in the trajectory due to the presence of an additional
quasiparticle is crucial for obtaining the correct value of the statistics. The
conditions for the applicability of the fractional statistics concept are
discussed.Comment: Phys. Rev. Lett., in pres
Recommended from our members
Automatic Detection of Clear-Sky Periods From Irradiance Data
Recent degradation studies have highlighted the importance of considering cloud cover when calculating degradation rates, finding more reliable values when the data are restricted to clear sky periods. Several automated methods of determining clear sky periods have been previously developed, but parameterizing and testing the models has been difficult. In this paper, we use clear sky classifications determined from satellite data to develop an algorithm that determines clear sky periods using only measured irradiance values and modeled clear sky irradiance as inputs. This method is tested on global horizontal irradiance (GHI) data from ground collectors at six sites across the United States and compared against independent satellite-based classifications. First, 30 separate models were optimized on each individual site at GHI data intervals of 1, 5, 10, 15, and 30 min (sampled on the first minute of the interval). The models had an average F0.5 score of 0.949 ± 0.035 on a holdout test set. Next, optimizations were performed by aggregating data from different locations at the same interval, yielding one model per data interval. This paper yielded an average F0.5 of 0.946 ± 0.037. A final, 'universal' optimization that was trained on data from all sites at all intervals provided an F0.5 score of 0.943 ± 0.040. The optimizations all provide improvements on a prior, unoptimized clear sky detection algorithm that produces F0.5 scores that average to 0.903 ± 0.067. Our paper indicates that a single algorithm can accurately classify clear sky periods across locations and data sampling intervals
Nonuniversal exponents in sandpiles with stochastic particle number transfer
We study fixed density sandpiles in which the number of particles transferred
to a neighbor on relaxing an active site is determined stochastically by a
parameter . Using an argument, the critical density at which an
active-absorbing transition occurs is found exactly. We study the critical
behavior numerically and find that the exponents associated with both static
and time-dependent quantities vary continuously with .Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let
Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply Imaged Systems in the CLASS Statistical Sample
The present day observations favour a universe which is flat, accelerated and
composed of matter (baryonic + dark) and of a negative
pressure component, usually referred to as dark energy or quintessence. The
Cosmic Lens All Sky Survey (CLASS), the largest radio-selected galactic mass
scale gravitational lens search project to date, has resulted in the largest
sample suitable for statistical analyses. In the work presented here, we
exploit observed image separations of the multiply imaged lensed radio sources
in the sample. We use two different tests: (1) image separation distribution
function of the lensed radio sources and (2)
{\dtheta}_{\mathrm{pred}} vs {\dtheta}_{\mathrm{obs}} as observational
tools to constrain the cosmological parameters and \Om. The results are
in concordance with the bounds imposed by other cosmological tests.Comment: 20 pages latex; Modified " Results and Discussion " section, new
references adde
Knowledge representation system for assembly using robots
Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot
- …