26 research outputs found

    Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms

    Get PDF
    Angiogenesis is the hallmark of cancer, and development of aggressiveness of primary tumor depends on de novo angiogenesis. Here, using multiple in vitro and in vivo models, we report that osteopontin (OPN) triggers vascular endothelial growth factor (VEGF)-dependent tumor progression and angiogenesis by activating breast tumor kinase (Brk)/nuclear factor-inducing kinase/nuclear factor-κB (NF-κB)/activating transcription factor-4 (ATF-4) signaling cascades through autocrine and paracrine mechanisms in breast cancer system. Our results revealed that both exogenous and tumor-derived OPN play significant roles in VEGF-dependent tumor angiogenesis. Clinical specimen analysis showed that OPN and VEGF expressions correlate with levels of neuropilin-1, Brk, NF-κB, and ATF-4 in different grades of breast cancer. Consequently, OPN plays essential role in two key aspects of tumor progression: VEGF expression by tumor cells and VEGF-stimulated neovascularization. Thus, targeting OPN and its regulated signaling network could be a novel strategy to block tumor angiogenesis and may develop an effective therapeutic approach for the management of breast cancer

    The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C α/c-Src/IκB Kinase α/β-dependent prostate tumor progression and angiogenesis

    Get PDF
    The regulation of tumor progression towards its malignancy needs the interplay among several cytokines, growth factors, and enzymes, which are controlled in the tumor microenvironment. Here, we report that osteopontin, a small integrin-binding ligand N-linked glycoprotein family of calcified extracellular matrix-associated protein, regulates prostate tumor growth by regulating the expression of cyclooxygenase-2 (COX-2). We have shown that osteopontin stimulates the activation of protein kinase C a/nuclear factor-inducing kinase/nuclear factor-κB-dependent signaling cascades that induces COX-2 expression, which in turn regulates the prostaglandin E2 production, matrix metalloproteinase-2 activation, and tumor progression and angiogenesis. We have revealed that suppression of osteopontin-induced COX-2 expression by the nonsteroidal anti-inflammatory drug celecoxib or blocking the EP2 receptor by its blocking antibody resulted in significant inhibition of cell motility and tumor growth and angiogenesis. The data also showed that osteopontin-induced mice PC-3 xenograft exhibits higher tumor load, increased tumor cell infiltration, nuclear polymorphism, and neovascularization. Interestingly, use of celecoxib or anti-EP2 blocking antibody drastically suppressed osteopontin-induced tumor growth that further indicated that suppression of COX-2 or its metabolites could significantly inhibit osteopontin-induced tumor growth. Human clinical prostate cancer specimen analysis also supports our in vitro and animal model studies. Our findings suggest that blockage of osteopontin and/or COX-2 is a promising therapeutic approach for the inhibition of prostate tumor progression and angiogenesis

    Hypoxia regulates cross-talk between Syk and Lck leading to breast cancer progression and angiogenesis

    Get PDF
    Hypoxia is a key parameter that controls tumor angiogenesis and malignant progression by regulating the expression of several oncogenic molecules. The nonreceptor protein-tyrosine kinases Syk and Lck play crucial roles in the signaling mechanism of various cellular processes. The enhanced expression of Syk in normal breast tissue but not in malignant breast carcinoma has prompted us to investigate its potential role in mammary carcinogenesis. Accordingly, we hypothesized that hypoxia/reoxygenation (H/R) may play an important role in regulating Syk activation, and Lck may be involved in this process. In this study, we have demonstrated that H/R differentially regulates Syk phosphorylation and its subsequent interaction and cross-talk with Lck in MCF-7 cells. Moreover, Syk and Lck play differential roles in regulating Sp1 activation and expressions of melanoma cell adhesion molecule (MelCAM), urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) in response to H/R. Overexpression of wild type Syk inhibited the H/R-induced uPA, MMP-9, and VEGF expression but up-regulated MelCAM expression. Our data also indicated that MelCAM acts as a tumor suppressor by negatively regulating H/R-induced uPA secretion and MMP-9 activation. The mice xenograft study showed the cross-talk between Syk and Lck regulated H/R-induced breast tumor progression and further correlated with the expressions of MelCAM, uPA, MMP-9, and VEGF. Human clinical specimen analysis supported the in vitro and in vivo findings. To our knowledge, this is first report that the cross-talk between Syk and Lck regulates H/R-induced breast cancer progression and further suggests that Syk may act as potential therapeutic target for the treatment of breast cancer

    Prostaglandin E<SUB>2</SUB> regulates tumor angiogenesis in prostate cancer

    Get PDF
    In cancer management, the cyclooxygenase (COX)-targeted approach has shown great promise in anticancer therapeutics. However, the use of COX-2 inhibitors has side effects and health hazards; thus, targeting its major metabolite prostaglandin E2 (PGE2)-mediated signaling pathway might be a rational approach for the next generation of cancer management. Recent studies on several in vitro and in vivo models have revealed that elevated expression of COX-2 correlates with prostate tumor growth and angiogenesis. In this study, we have shown the in-depth molecular mechanism and the PGE2 activation of the epidermal growth factor receptor and &#946;3 integrin through E prostanoid 2 (EP2)-mediated and EP4-mediated pathways, which lead to activator protein-1 (AP-1) activation. Moreover, PGE2 also induces activating transcription factor-4 (ATF-4) activation and stimulates cross-talk between ATF-4 and AP-1, which is unidirectional toward AP-1, which leads to the increased expressions of urokinase-type plasminogen activator and vascular endothelial growth factor and, eventually, regulates prostate tumor cell motility. In vivo Matrigel angiogenesis assay data revealed that PGE2 induces angiogenesis through EP2 and EP4. Human prostate cancer specimen analysis also supported our in vitro and in vivo studies. Our data suggest that targeting PGE2 signaling pathway (i.e., blocking EP2 and EP4 receptors) might be a rational therapeutic approach for overcoming the side effects of COX-2 inhibitors and that this might be a novel strategy for the next generation of prostate cancer management

    Down-regulation of osteopontin attenuates breast tumour progression in vivo

    No full text
    Development of breast tumour malignancies results in enhanced expression of various oncogenic molecules. Elevated expression of osteopontin (OPN) in higher grades of breast carcinoma correlates with enhanced expressions of several oncogenic molecules (urokinase-type plasminogen activator [uPA], matrix metalloproteinase-2/-9 [MMP-2 and -9]) and increased angiogenic potential of breast carcinoma. In this study, using in vitro and multiple in vivo models, we have demonstrated that silencing of OPN by its specific small interfering RNA (siRNA) down-regulates the expressions of oncogenic molecules such as uPA, MMP-2 and -9 resulting in inhibition of in vitro cell motility and in vivo tumourigenicity in mice. Moreover our results demonstrated that OPN-/- mice showed slower progression of tumour growth in breast cancer model as compared to wild-type mice. Furthermore, the data showed that injection of carcinogenic compound, pristane (2, 6,10,14-tetramethylpen-tadecane) induces breast tumour progression leading to enhanced expression of OPN and other oncogenic molecules in mammary fat pad of nude- and wild-type mice but not in OPN-/ mice. However, intratumoural injection of OPN siRNA to pristane-induced tumour significantly suppressed these effects. Our data revealed that knocking down of OPN effectively curb breast cancer progression and further suggested that developing of OPN-based therapeutics might be an emerging approach for the next generation of breast cancer management

    Methane emissions from rice fields amended with biogas slurry and farm yard manure

    No full text
    In an experiment on methane-emission measurements from rice fields amended with urea, biogas spent slurry (BSS)+urea, and farm yard manure (FYM)+urea, three distinctive peaks in the methane emissions were observed at 15, 46, and 69 days after transplanting (DAT) due to the availability of readily degradable C-sources. In all cases, the highest peak was at 69 DAT. The steepest Eh drop to a minimum of -320 mV was reached within two weeks of submergence. pH ranged between 7.5 and 8.5. The combined fertilization (FYM+urea) plot showed the maximum emission rate of 4.86 mg m<SUP>-2</SUP> h<SUP>-1</SUP> with a total load of 49.44 kg ha<SUP>-1</SUP> and was 2.3 times higher than (BSS+urea)-treated plot (22.08 kg ha<SUP>-1</SUP>). Grain yields in urea, (BSS+urea) and (FYM+urea) plots were 3.34, 2.94, and 2.85 t ha<SUP>-1</SUP> respectively, suggesting that biogas slurry is a preferred source over FYM causing lesser environmental pollution without any significant reduction in grain yield
    corecore