3 research outputs found

    Altered ontogeny and transcriptomic signatures of tissue-resident pulmonary interstitial macrophages ameliorate allergic airway hyperresponsiveness

    Get PDF
    IntroductionEnvironmental exposures and experimental manipulations can alter the ontogenetic composition of tissue-resident macrophages. However, the impact of these alterations on subsequent immune responses, particularly in allergic airway diseases, remains poorly understood. This study aims to elucidate the significance of modified macrophage ontogeny resulting from environmental exposures on allergic airway responses to house dust mite (HDM) allergen.MethodsWe utilized embryonic lineage labeling to delineate the ontogenetic profile of tissue-resident macrophages at baseline and following the resolution of repeated lipopolysaccharide (LPS)-induced lung injury. We investigated differences in house dust mite (HDM)-induced allergy to assess the influence of macrophage ontogeny on allergic airway responses. Additionally, we employed single-cell RNA sequencing (scRNAseq) and immunofluorescent staining to characterize the pulmonary macrophage composition, associated pathways, and tissue localization.ResultsOur findings demonstrate that the ontogeny of homeostatic alveolar and interstitial macrophages is altered after the resolution from repeated LPS-induced lung injury, leading to the replacement of embryonic-derived by bone marrow-derived macrophages. This shift in macrophage ontogeny is associated with reduced HDM-induced allergic airway responses. Through scRNAseq and immunofluorescent staining, we identified a distinct subset of resident-derived interstitial macrophages expressing genes associated with allergic airway diseases, localized adjacent to terminal bronchi, and diminished by prior LPS exposure.DiscussionThese results suggest a pivotal role for pulmonary macrophage ontogeny in modulating allergic airway responses. Moreover, our findings highlight the implications of prior environmental exposures in shaping future immune responses and influencing the development of allergies. By elucidating the mechanisms underlying these phenomena, this study provides valuable insights into potential therapeutic targets for allergic airway diseases and avenues for further research into immune modulation and allergic disease prevention

    Genetic variation in surfactant protein-A2 alters responses to ozone.

    No full text
    BackgroundIncreased exposure to Ozone (O3) is associated with adverse health effects in individuals afflicted with respiratory diseases. Surfactant protein-A (SP-A), encoded by SP-A1 and SP-A2, is the largest protein component in pulmonary surfactant and is functionally impaired by O3-oxidation.ObjectiveWe used humanized SP-A2 transgenic mice with allelic variation corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 in the lectin domain to determine the impact of this genetic variation in regards to O3 exposure.MethodsMice were exposed to 2ppm O3 or Filtered Air (FA) for 3 hours and 24 hrs post-challenge pulmonary function tests and other parameters associated with inflammation were assessed in the bronchoalveolar lavage (BAL) fluid and lung tissue. Additionally, mouse tracheal epithelial cells were cultured and TEER measurements recorded for each genotype to determine baseline epithelial integrity.ResultsCompared to FA, O3 exposure led to significantly increased sensitivity to methacholine challenge in all groups of mice. SP-A2 223Q variant mice were significantly protected from O3-induced AHR compared to SP-A-/- and SP-A2 223K mice. Neutrophilia was observed in all genotypes of mice post O3-exposure, however, SP-A2 223Q mice had a significantly lower percentage of neutrophils compared to SP-A-/- mice. Albumin levels in BAL were unchanged in O3-exposed SP-A2 223Q mice compared to their FA controls, while levels were significantly increased in all other genotypes of O3-exposed mice. SP-A 223Q MTECS has significant higher TEER values than all other genotypes, and WT MTECS has significantly higher TEER than the SP-A KO and SP-A 223K MTECS.SignificanceTaken together, our study suggests that expression of a glutamine (Q) as position 223 in SP-A2, as opposed to expression of lysine (K), is more protective in acute exposures to ozone and results in attenuated O3-induced AHR, neutrophilia, and vascular permeability
    corecore