3 research outputs found

    Study of NiFe2O4/Cu2O p-n heterojunctions for hydrogen production by photocatalytic water splitting with visible light

    No full text
    To date, synthesis of visible light-active materials for photocatalytic water splitting is a promising challenge for future applications, e.g., photocatalytic reactors for hydrogen production with solar energy. Type p-n heterojunctions are an alternative to improve electronic properties of pure phase semiconductors and achieve a higher hydrogen production with photocatalytic water splitting. In this work, heterojunctions of NiFe2O4/Cu2O at mass percentages of 75/25, 50/50 and 25/75, are generated by impregnation method and thermal annealing starting from pristine materials NiFe2O4 and Cu2O synthesized by Pechini's method and Benedict's reaction respectively. A photocatalytic evaluation for hydrogen production was performed by means of gas chromatography for pristine and heterojunctions in order to correlate their textural, structural, chemical and electronic properties with their photocatalytic activity, finding a direct correlation between charge carrier concentration and hydrogen production. Finally, the material that exhibited higher hydrogen production was the 50/50 ratio with a production 120 times greater at 24 h in comparison with pristine photocatalysts

    Comparative Study of Zn2Ti3O8 and ZnTiO3 Photocatalytic Properties for Hydrogen Production

    No full text
    In the present work, zinc titanates (ZTO) as photocatalysts were synthesized, characterized, and evaluated aiming to study their photocatalytic properties for hydrogen production under visible-light irradiation and employing MeOH (methanol) and TEOA (Triethanolamine) as sacrificial agents. ZTO were synthesized by modified Pechini method. Characterization of materials consisted in TGA, XRD, TEM, EELS, BET, and UV–Vis. Surface interaction studies consisted of FT-IR spectroscopy and determination of MeOH and TEOA adsorption–desorption capacities on the ZTO by TGA. Zinc titanates were evaluated as photocatalyst for H2 production using an artificial visible light and monitored by GC. TGA results led to establish calcination temperatures of 550 °C (Zn2Ti3O8) and 700 °C (ZnTiO3) to reach their crystalline phases. XRD analysis of sample cds-ZTO found cubic Zn2Ti3O8 and traces of the ZnO crystalline phase, while p-ZTO exhibited a mixture of cubic and hexagonal ZnTiO3 crystalline phases. Surface area for cds-ZTO was 88 m2/g, while ZnTiO3 had 13 m2/g. Photocatalytic H2 production for cds-ZTO and p-ZTO using TEOA as sacrificial agent showed the highest photocatalytic activities generating 548 and 441 µmolH2/h.gcat. TEOA adsorption–desorption capacity was found superior on cds-ZTO and p-ZTO than that for MeOH on both samples

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore