248 research outputs found
Verification and intercomparison of reactive transport codes to describe root-uptake
Several mathematical models have been developed to simulate processes and interactions in the plant rhizosphere. Most of these models are based on a rather simplified description of the soil chemistry and interactions of plant roots in the rhizosphere. In particular the feedback loops between exudation, water and solute uptake are mostly not considered, although their importance in the bioavailability of mineral elements for plants has been demonstrated. The aim of this work was to evaluate three existing coupled speciation-transport tools to model rhizosphere processes. In the field of hydrogeochemistry, such␣computational tools have been developed to␣describe acid-base and redox reactions, complexation and ion exchange, adsorption and precipitation of chemical species in soils and aquifers using thermodynamic and kinetic relationships. We implemented and tested a simple rhizosphere model with three geochemical computational tools (ORCHESTRA, MIN3P, and PHREEQC). The first step was an accuracy analysis of the different solution strategies by comparing the numerical results to the analytical solution of solute uptake (K or Ca) by a single cylindrical root. All models are able to reproduce the concentration profiles as well as the uptake flux. The relative error of the simulated concentration profile decreases with increasing distance from the root. The uptake flux was simulated for all codes with less than 5% error for K and less than 0.4% for Ca. The strength of the codes presented in this paper is that they can also be used to investigate more complex and coupled biogeochemical processes in rhizosphere models. This is shown exemplarily with simulations involving both exudation and uptake and the simultaneous uptake of solute and wate
Congenital diaphragmatic hernia in the preterm infant.
BACKGROUND: Congenital diaphragmatic hernia (CDH) remains a significant cause of death in newborns. With advances in neonatal critical care and ventilation strategies, survival in the term infant now exceeds 80% in some centers. Although prematurity is a significant risk factor for morbidity and mortality in most neonatal diseases, its associated risk with infants with CDH has been described poorly. We sought to determine the impact of prematurity on survival using data from the Congenital Diaphragmatic Hernia Registry (CDHR).
METHODS: Prospectively collected data from live-born infants with CDH were analyzed from the CDHR from January 1995 to July 2009. Preterm infants were defined as \u3c37 weeks estimated gestational age at birth. Univariate and multivariate logistic regression analysis were\u3eperformed.
RESULTS: During the study period, 5,069 infants with CDH were entered in the registry. Of the 5,022 infants with gestational age data, there were 3,895 term infants (77.6%) and 1,127 preterm infants (22.4%). Overall survival was 68.7%. A higher percentage of term infants were treated with extracorporeal membrane oxygenation (ECMO) (33% term vs 25.6% preterm). Preterm infants had a greater percentage of chromosomal abnormalities (4% term vs 8.1% preterm) and major cardiac anomalies (6.1% term vs 11.8% preterm). Also, a significantly higher percentage of term infants had repair of the hernia (86.3% term vs 69.4% preterm). Survival for infants that underwent repair was high in both groups (84.6% term vs 77.2% preterm). Survival decreased with decreasing gestational age (73.1% term vs 53.5% preterm). The odds ratio (OR) for death among preterm infants adjusted for patch repair, ECMO, chromosomal abnormalities, and major cardiac anomalies was OR 1.68 (95% confidence interval [CI], 1.34-2.11).
CONCLUSION: Although outcomes for preterm infants are clearly worse than in the term infant, more than 50% of preterm infants still survived. Preterm infants with CDH remain a high-risk group. Although ECMO may be of limited value in the extremely premature infant with CDH, most preterm infants that live to undergo repair will survive. Prematurity should not be an independent factor in the treatment strategies of infants with CDH
Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa
Genetic determinants of antibiotic resistance (AR) have been extensively investigated. High-throughput sequencing allows for the assessment of the relationship between genotype and phenotype. A panel of 672 Pseudomonas aeruginosa strains was analysed, including representatives of globally disseminated multidrug-resistant and extensively drug-resistant clones; genomes and multiple antibiograms were available. This panel was annotated for AR gene presence and polymorphism, defining a resistome in which integrons were included. Integrons were present in >70 distinct cassettes, with In5 being the most prevalent. Some cassettes closely associated with clonal complexes, whereas others spread across the phylogenetic diversity, highlighting the importance of horizontal transfer. A resistome-wide association study (RWAS) was performed for clinically relevant antibiotics by correlating the variability in minimum inhibitory concentration (MIC) values with resistome data. Resistome annotation identified 147 loci associated with AR. These loci consisted mainly of acquired genomic elements and intrinsic genes. The RWAS allowed for correct identification of resistance mechanisms for meropenem, amikacin, levofloxacin and cefepime, and added 46 novel mutations. Among these, 29 were variants of the oprD gene associated with variation in meropenem MIC. Using genomic and MIC data, phenotypic AR was successfully correlated with molecular determinants at the whole-genome sequence level
Emergence of Epidemic Neisseria meningitidis Serogroup X Meningitis in Togo and Burkina Faso
Serogroup X meningococci (NmX) historically have caused sporadic and clustered meningitis cases in sub-Saharan Africa. To study recent NmX epidemiology, we analyzed data from population-based, sentinel and passive surveillance, and outbreak investigations of bacterial meningitis in Togo and Burkina Faso during 2006–2010. Cerebrospinal fluid specimens were analyzed by PCR. In Togo during 2006–2009, NmX accounted for 16% of the 702 confirmed bacterial meningitis cases. Kozah district experienced an NmX outbreak in March 2007 with an NmX seasonal cumulative incidence of 33/100,000. In Burkina Faso during 2007–2010, NmX accounted for 7% of the 778 confirmed bacterial meningitis cases, with an increase from 2009 to 2010 (4% to 35% of all confirmed cases, respectively). In 2010, NmX epidemics occurred in northern and central regions of Burkina Faso; the highest district cumulative incidence of NmX was estimated as 130/100,000 during March–April. Although limited to a few districts, we have documented NmX meningitis epidemics occurring with a seasonal incidence previously only reported in the meningitis belt for NmW135 and NmA, which argues for development of an NmX vaccine
The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study
<p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p
Can we improve outcome of congenital diaphragmatic hernia?
This review gives an overview of the disease spectrum of congenital diaphragmatic hernia (CDH). Etiological factors, prenatal predictors of survival, new treatment strategies and long-term morbidity are described. Early recognition of problems and improvement of treatment strategies in CDH patients may increase survival and prevent secondary morbidity. Multidisciplinary healthcare is necessary to improve healthcare for CDH patients. Absence of international therapy guidelines, lack of evidence of many therapeutic modalities and the relative low number of CDH patients calls for cooperation between centers with an expertise in the treatment of CDH patients. The international CDH Euro-Consortium is an example of such a collaborative network, which enhances exchange of knowledge, future research and development of treatment protocols
The Human Proteins MBD5 and MBD6 Associate with Heterochromatin but They Do Not Bind Methylated DNA
BACKGROUND: MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation. PRINCIPAL FINDINGS: Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested. CONCLUSIONS: Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization
- …