125 research outputs found
Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers
Objective:
Identification of patients at risk of developing epilepsy before the first spontaneous seizure may promote the development of preventive treatment providing opportunity to stop or slow down the disease. //
Methods:
As development of novel radiotracers and onâsite setup of existing radiotracers is highly timeâconsuming and expensive, we used dualâcentre in vitro autoradiography as an approach to characterize the potential of innovative radiotracers in the context of epilepsy development. Using brain slices from the same group of rats, we aimed to characterise the evolution of neuroinflammation and expression of inhibitory and excitatory neuroreceptors during epileptogenesis using translational positron emission tomography (PET) tracers; 18Fâflumazenil (18FâFMZ; GABAA receptor), 18FâFPEB (metabotropic glutamate receptor 5; mGluR5), 18Fâflutriciclamide (translocator protein; TSPO, microglia activation) and 18Fâdeprenyl (monoamine oxidase B, astroglia activation). Autoradiography images from selected time points after pilocarpineâinduced status epilepticus (SE; baseline, 24 and 48 hours, 5, 10 and 15 days and 6 and 12â14 weeks after SE) were normalized to a calibration curve, coâregistered to an MRIâbased 2D regionâofâinterest atlas, and activity concentration (Bq/mm2) was calculated. //
Results:
In epileptogenesisâassociated brain regions, 18FâFMZ and 18FâFPEB showed an early decrease after SE. 18FâFMZ decrease was maintained in the latent phase and further reduced in the chronic epileptic animals, while 18FâFPEB signal recovered from day 10, reaching baseline levels in chronic epilepsy. 18Fâflutriciclamide showed an increase of activated microglia at 24 hours after SE, peaking at 5â15 days and decreasing during the chronic phase. On the other hand, 18Fâdeprenyl autoradiography showed late astrogliosis, peaking in the chronic phase. //
Significance:
Autoradiography revealed different evolution of the selected targets during epileptogenesis. Our results suggest an advantage of combined imaging of interârelated targets like glutamate and GABAA receptors, or microglia and astrocyte activation, in order to identify important interactions, especially when using PET imaging for the evaluation of novel treatments
Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food
Species of the genus Wolffia are traditionally used as human food in some of the Asian countries. Therefore, all 11 species of this genus, identified by molecular barcoding, were investigated for ingredients relevant to human nutrition. The total protein content varied between 20 and 30% of the freeze-dry weight, the starch content between 10 and 20%, the fat content between 1 and 5%, and the fiber content was ~25%. The essential amino acid content was higher or close to the requirements of preschool-aged children according to standards of the World Health Organization. The fat content was low, but the fraction of polyunsaturated fatty acids was above 60% of total fat and the content of n-3 polyunsaturated fatty acids was higher than that of n-6 polyunsaturated fatty acids in most species. The content of macro- and microelements (minerals) not only depended on the cultivation conditions but also on the genetic background of the species. This holds true also for the content of tocopherols, several carotenoids and phytosterols in different species and even intraspecific, clonal differences were detected in Wolffia globosa and Wolffia arrhiza. Thus, the selection of suitable clones for further applications is important. Due to the very fast growth and the highest yield in most of the nutrients, Wolffia microscopica has a high potential for practical applications in human nutrition
Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain
Sucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization in Escherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes in E. coli W were examined by knockout and overexpression experiments. At low sucrose concentrations, the csc genes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout of cscR and cscK conferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism in E. coli W, demonstrating that no other genes can provide sucrose transport or inversion activities. However, cscK is not essential for sucrose utilization. Fructose is excreted into the medium by the cscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression of cscA, cscAK, or cscAB could complement the W Delta cscRKAB knockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressing cscAB, and full growth rate complementation in W Delta cscRKA Balso required cscAB. Our understanding of sucrose utilization can be used to improve E. coli Wand engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations
The host metabolite D-serine contributes to bacterial niche specificity through gene selection
Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the hostâpathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an âevolutionary incompatibilityâ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis
<p>Abstract</p> <p>Background</p> <p>Although <it>Escherichia coli </it>is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.</p> <p>Results</p> <p>We used a three-step approach in which we combined gene regulatory network inference based on directed information (DTI) and sequence analysis. DTI values were calculated on a set of gene expression profiles from 19 time course experiments extracted from the Many Microbes Microarray Database. Focusing on influences between pairs of genes in which one partner encodes a transcription factor (TF) we derived a network which contains 878 TF - gene interactions of which 166 are known according to RegulonDB. Afterward, we selected a subset of 109 interactions that could be confirmed by the presence of a phylogenetically conserved binding site of the respective regulator. By this second step, the fraction of known interactions increased from 19% to 60%. In the last step, we checked the 44 of the 109 interactions not yet included in RegulonDB for functional relationships between the regulator and the target and, thus, obtained ten TF - target gene interactions. Five of them concern the regulator LexA and have already been reported in the literature. The remaining five influences describe regulations by Fis (with two novel targets), PhdR, PhoP, and KdgR. For the validation of our approach, one of them, the regulation of lipoate synthase (LipA) by the pyruvate-sensing pyruvate dehydrogenate repressor (PdhR), was experimentally checked and confirmed.</p> <p>Conclusions</p> <p>We predicted a set of five novel TF - target gene interactions in <it>E. coli</it>. One of them, the regulation of <it>lipA </it>by the transcriptional regulator PdhR was validated experimentally. Furthermore, we developed DTInfer, a new R-package for the inference of gene-regulatory networks from microarrays using directed information.</p
Genomic Characterization of Haemophilus parasuis SH0165, a Highly Virulent Strain of Serovar 5 Prevalent in China
Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis
- âŚ