4,536 research outputs found
The merging/AGN connection: A case for 3D spectroscopy
We discuss an ongoing study of the connection between galaxy
merging/interaction and AGN activity, based on integral field spectroscopy. We
focus on the search for AGN ionization in the central regions of mergers,
previously not classified as AGNs. We present here the science case, the
current status of the project, and plans for future observations.Comment: 4 pages, 3 figure, Euro3D Science Workshop, Cambridge, May 2003, AN,
accepte
Transfer ionization and its sensitivity to the ground-state wave function
We present kinematically complete theoretical calculations and experiments
for transfer ionization in HHe collisions at 630 keV/u. Experiment and
theory are compared on the most detailed level of fully differential cross
sections in the momentum space. This allows us to unambiguously identify
contributions from the shake-off and two-step-2 mechanisms of the reaction. It
is shown that the simultaneous electron transfer and ionization is highly
sensitive to the quality of a trial initial-state wave function
Multiorbital tunneling ionization of the CO molecule
We coincidently measure the molecular frame photoelectron angular
distribution and the ion sum-momentum distribution of single and double
ionization of CO molecules by using circularly and elliptically polarized
femtosecond laser pulses, respectively. The orientation dependent ionization
rates for various kinetic energy releases allow us to individually identify the
ionizations of multiple orbitals, ranging from the highest occupied to the next
two lower-lying molecular orbitals for various channels observed in our
experiments. Not only the emission of a single electron, but also the
sequential tunneling dynamics of two electrons from multiple orbitals are
traced step by step. Our results confirm that the shape of the ionizing
orbitals determine the strong laser field tunneling ionization in the CO
molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review
Letter
Construction of an isotropic cellular automaton for a reaction-diffusion equation by means of a random walk
We propose a new method to construct an isotropic cellular automaton
corresponding to a reaction-diffusion equation. The method consists of
replacing the diffusion term and the reaction term of the reaction-diffusion
equation with a random walk of microscopic particles and a discrete vector
field which defines the time evolution of the particles. The cellular automaton
thus obtained can retain isotropy and therefore reproduces the patterns found
in the numerical solutions of the reaction-diffusion equation. As a specific
example, we apply the method to the Belousov-Zhabotinsky reaction in excitable
media
Carbon K-shell Photo Ionization of CO: Molecular frame angular Distributions of normal and conjugate shakeup Satellites
We have measured the molecular frame angular distributions of photoelectrons
emitted from the Carbon K shell of fixed-in-space CO molecules for the case of
simultaneous excitation of the remaining molecular ion. Normal and conjugate
shake up states are observed. Photo electrons belonging to normal \Sigma
-satellite lines show an angular distribution resembling that observed for the
main photoline at the same electron energy. Surprisingly a similar shape is
found for conjugate shake up states with \Pi -symmetry. In our data we identify
shake rather than electron scattering (PEVE) as the mechanism producing the
conjugate lines. The angular distributions clearly show the presence of a
\Sigma -shape resonance for all of the satellite lines.Comment: 8 pages, 2 figure
- …