2 research outputs found

    ‘Bouncing back’ from subclinical malaria:Inflammation and erythrocytosis after resolution of P. falciparum infection in Gambian children

    Get PDF
    Recent malaria is associated with an increased risk of systemic bacterial infection. The aetiology of this association is unclear but malaria-related haemolysis may be one contributory factor. To characterise the physiological consequences of persistent and recently resolved malaria infections and associated haemolysis, 1650 healthy Gambian children aged 8–15 years were screened for P. falciparum infection (by 18sRNA PCR) and/or anaemia (by haematocrit) at the end of the annual malaria transmission season (t1). P. falciparum-infected children and children with moderate or severe anaemia (haemoglobin concentration < 11g/dl) were age matched to healthy, uninfected, non-anaemic controls and screened again 2 months later (t2). Persistently infected children (PCR positive at t1 and t2) had stable parasite burdens and did not differ significantly haematologically or in terms of proinflammatory markers from healthy, uninfected children. However, among persistently infected children, IL-10 concentrations were positively correlated with parasite density suggesting a tolerogenic response to persistent infection. By contrast, children who naturally resolved their infections (positive at t1 and negative at t2) exhibited mild erythrocytosis and concentrations of pro-inflammatory markers were raised compared to other groups of children. These findings shed light on a ‘resetting’ and potential overshoot of the homeostatic haematological response following resolution of malaria infection. Interestingly, the majority of parameters tested were highly heterogeneous in uninfected children, suggesting that some may be harbouring cryptic malaria or other infections

    Dry season prevalence of Plasmodium falciparum in asymptomatic gambian children, with a comparative evaluation of diagnostic methods.

    Get PDF
    BACKGROUND: Subclinical infection with Plasmodium falciparum remains highly prevalent, yet diagnosing these often low-density infections remains a challenge. Infections can be subpatent, falling below the limit of detection for conventional thick-film microscopy and rapid diagnostic testing (RDT). In this study, the prevalence of subclinical P. falciparum infections in school-aged children was characterised at the start of the dry season in the Upper River Region of The Gambia in 2017/2018, with a goal to also compare the utility of different diagnostic tools. METHODS: In a cross-sectional survey of children living in 29 villages on the south bank of the Gambia river (median age of 10 years), matched microscopy, rapid diagnostic test (RDT, detecting histidine-rich protein 2) and polymerase chain reaction (PCR, targeting either 18S rRNA or var gene acidic terminal sequence) were used to determine the prevalence of patent and subpatent infections and to compare the performance of the different diagnostic methods. RESULTS: The prevalence of var gene acidic terminal sequence (varATS) qPCR-detectable infections was 10.2% (141/1381) with a median density of 3.12 parasites/µL. Malaria prevalence was highly heterogeneous across the region, ranging from  98%). Samples that were positive by all three tests (varATS qPCR, RDT and microscopy) had significantly higher parasite densities (median = 1705 parasites/µL) than samples that were positive by varATS qPCR only (median = 2.4 parasites/µL). CONCLUSIONS: The majority of subclinical malaria infections in school-aged children were of extremely low parasite density and detectable only by ultra-sensitive PCR analysis. Understanding the duration of these low density infections, their physiological impact and their contribution to sustained parasite transmission is necessary to inform malaria elimination strategies
    corecore