3 research outputs found

    A comparative study on the fatigue life of the vehicle body spot welds using different numerical techniques: Inertia relief and Modal dynamic analyses

    Get PDF
    Among different parts of a vehicle, the body is the main load-bearing component and as a result, its durability is critical. Fatigue analyses are typically divided into different categories, the quasi-static methods and the dynamic methods. The aim of this paper was to compare the inertia relief and modal dynamic approaches for their formulation, accuracy and computation time. The chosen case study is the fatigue life of the vehicle body. By utilizing multi-body dynamics model and driving the vehicle on different standardized roads and by different velocities, the force and moment time histories which act on the body were calculated and later used by the finite element model for the stress analysis. Then, by using the structural stress method, the fatigue life of the vehicle spot welds were calculated and the results were compared for both quasi-static and dynamic approaches. The findings reveal that the modal dynamic method is almost 37 times more time-consuming than the inertia relief approach, but if accuracy is desired, it can be up to 96% more accurate. Also as predicted, at low frequency loading (less than 10% of the first nonzero frequency of the structure), there is no difference between the results of both methods

    COVID-19 pathology on various organs and regenerative medicine and stem cell-based interventions

    No full text
    Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated
    corecore