12 research outputs found

    Whole-Brain Proton MR Spectroscopic Imaging of Mild-to-Moderate Traumatic Brain Injury and Correlation with Neuropsychological Deficits

    No full text
    Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10–15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance

    Neural fragility as an EEG marker of the seizure onset zone

    No full text
    Over 15 million epilepsy patients worldwide do not respond to drugs. Successful surgical treatment requires complete removal, or disconnection of the seizure onset zone (SOZ), brain region(s) where seizures originate. Unfortunately, surgical success rates vary between 30%-70% because no clinically validated biological marker of the SOZ exists. We develop and retrospectively validate a new EEG marker - neural fragility - in a retrospective analysis of 91 patients by using neural fragility of the annotated SOZ as a metric to predict surgical outcomes. Fragility predicts 43/47 surgical failures with an overall prediction accuracy of 76%, compared to the accuracy of clinicians being 48% (successful outcomes). In failed outcomes, we identify fragile regions that were untreated. When compared to 20 EEG features proposed as SOZ markers, fragility outperformed in predictive power and interpretability suggesting neural fragility as an EEG biomarker of the SOZ

    Subthalamic deep brain stimulation with a constant-current device in Parkinson\u27s disease: An open-label randomised controlled trial

    No full text
    Background: The effects of constant-current deep brain stimulation (DBS) have not been studied in controlled trials in patients with Parkinson\u27s disease. We aimed to assess the safety and efficacy of bilateral constant-current DBS of the subthalamic nucleus. Methods: This prospective, randomised, multicentre controlled trial was done between Sept 26, 2005, and Aug 13, 2010, at 15 clinical sites specialising in movement disorders in the USA. Patients were eligible if they were aged 18-80 years, had Parkinson\u27s disease for 5 years or more, and had either 6 h or more daily off time reported in a patient diary of moderate to severe dyskinesia during waking hours. The patients received bilateral implantation in the subthalamic nucleus of a constant-current DBS device. After implantation, computer-generated randomisation was done with a block size of four, and patients were randomly assigned to the stimulation or control group (stimulation:control ratio 3:1). The control group received implantation without activation for 3 months. No blinding occurred during this study, and both patients and investigators were aware of the treatment group. The primary outcome variable was the change in on time without bothersome dyskinesia (ie, good quality on time) at 3 months as recorded in patients\u27 diaries. Patients were followed up for 1 year. This trial is registered with ClinicalTrials.gov, number NCT00552474. Findings: Of 168 patients assessed for eligibility, 136 had implantation of the constant-current device and were randomly assigned to receive immediate (101 patients) or delayed (35 patients) stimulation. Both study groups reported a mean increase of good quality on time after 3 months, and the increase was greater in the stimulation group (4·27 h vs 1·77 h, difference 2·51 [95% CI 0·87-4·16]; p=0·003). Unified Parkinson\u27s disease rating scale motor scores in the off-medication, on-stimulation condition improved by 39% from baseline (24·8 vs 40·8). Some serious adverse events occurred after DBS implantation, including infections in five (4%) of 136 patients and intracranial haemorrhage in four (3%) patients. Stimulation of the subthalamic nucleus was associated with dysarthria, fatigue, paraesthesias, and oedema, whereas gait problems, disequilibrium, dyskinesia, and falls were reported in both groups. Interpretation: Constant-current DBS of the subthalamic nucleus produced significant improvements in good quality on time when compared with a control group without stimulation. Future trials should compare the effects of constant-current DBS with those of voltage-controlled stimulation. Funding: St Jude Medical Neuromodulation Division. © 2012 Elsevier Ltd
    corecore