5 research outputs found

    Aerosol particles (0.3–10 μm) inside an educational workshop : Emission rate and inhaled deposited dose

    Get PDF
    In this study, we measured the concentrations of accumulation and coarse particles inside an educational workshop (March 31–April 6, 2015), calculated particle emission and losses rates, and estimated inhaled deposited dose. We used an Optical Particle Sizer (TSI OPS 3330) that measures the particle number size distribution (diameter 0.3–10 μm) and we converted that into particle mass size distribution (assuming spherical particles and unit density). We focused on two particle size fractions: 0.3–1 μm (referred as PN0.3−1 and PM0.3−1) and 1–10 μm (referred as PN1−10 and PM1−10). The occupants' activities included coffee brewing, lecturing, tobacco smoking, welding, scrubbing, and sorting/drilling iron. The highest concentrations were observed during welding with PN0.3−1 (PM0.3−1) was ∼1866 cm−3 (55 μg/m3) and PN1−10 (PM1−10) was ∼7 cm−3 (103 μg/m3). The lowest concentrations were observed during coffee brewing and metal turning with PN0.3−1 (PM0.3−1) was ∼22 cm−3 (0.7 μg/m3) and PN1−10 (PM1−10) was ∼0.5 cm−3 (4 μg/m3). The emissions rate of coarse particles was 85–1010 particles/hour × cm3 whereas that for submicron particle in the diameter range 0.3–1 μm was 5.7 × 104–9.3 × 104 particles/hour × cm3 depending on the activity and the ventilation rate. The coarse particles losses rate was 0.35–2.1 h−1 and the ventilation rate was 0.24–2.1 h−1. The alveolar received the majority and particles below 1 μm with a fraction of about 53% of the total inhaled deposited dose whereas the head/throat region received about 18%. This study is important for better understanding the health effects at educational workshops.Peer reviewe

    Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments

    Get PDF
    There is limited research on indoor air quality in the Middle East. In this study, concentrations and size distributions of indoor particles were measured in eight Jordanian dwellings during the winter and summer. Supplemental measurements of selected gaseous pollutants were also conducted. Indoor cooking, heating via the combustion of natural gas and kerosene, and tobacco/shisha smoking were associated with significant increases in the concentrations of ultrafine, fine, and coarse particles. Particle number (PN) and particle mass (PM) size distributions varied with the different indoor emission sources and among the eight dwellings. Natural gas cooking and natural gas or kerosene heaters were associated with PN concentrations on the order of 100,000 to 400,000 cm−3 and PM2.5 concentrations often in the range of 10 to 150 µg/m3. Tobacco and shisha (waterpipe or hookah) smoking, the latter of which is common in Jordan, were found to be strong emitters of indoor ultrafine and fine particles in the dwellings. Non-combustion cooking activities emitted comparably less PN and PM2.5. Indoor cooking and combustion processes were also found to increase concentrations of carbon monoxide, nitrogen dioxide, and volatile organic compounds. In general, concentrations of indoor particles were lower during the summer compared to the winter. In the absence of indoor activities, indoor PN and PM2.5 concentrations were generally below 10,000 cm−3 and 30 µg/m3, respectively. Collectively, the results suggest that Jordanian indoor environments can be heavily polluted when compared to the surrounding outdoor atmosphere primarily due to the ubiquity of indoor combustion associated with cooking, heating, and smoking
    corecore