2 research outputs found

    Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction

    Get PDF
    Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions

    The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis

    Get PDF
    The transverse aortic constriction (TAC) model is frequently used to study adverse cardiac remodeling upon pressure overload. We set out to define the most important characteristics that define the degree of cardiac remodeling in this model. A systematic review and meta-analyses were performed on studies using the TAC mouse/rat model and reporting echocardiographic outcome parameters. We included all animal studies in which a constriction around the transverse aorta and at least one of the predefined echocardiography or MRI outcome parameters were assessed. A total of 502 articles and > 3000 wild-type, untreated animals undergoing TAC were included in this study and referenced to a control group. The duration of aortic constriction correlated to the degree of adverse remodeling. However, the mouse data is strongly biased by the preferential use of male C57Bl/6 mice (66% of studies). Furthermore, mostly ketamine/xylazine anesthetics, 27G needle constriction, and silk sutures are used. Nonetheless, despite the homogeneity in experimental design, the model contained a substantial degree of heterogeneity in the functional outcome measures. When looking at study quality, only 12% reported randomization, 23% mentioned any sort of blinding, 25% adequately addressed the outcomes, and an amazingly low percentage (2%) showed sample size calculation. Meta-analyses did not detect specific study characteristics that explained the heterogeneity in the reported outcome measures, however this might be related to the strong bias towards the use of specific mouse lines, sex as well as age or to poor reporting of characteristics of study quality
    corecore