33 research outputs found

    Optimal Design of Damping Control of Oscillations in Power System Using Power System Stabilizers with Novel Improved BBO Algorithm

    Get PDF
    Studies on power system stability are necessary for power network development & operation. Due to the great dimensionality and complexity of contemporary power systems, its significance has increased. The stability of an interconnected power system is seriously threatened by power system oscillation. Numerous strategies based on contemporary control theory, intelligent control, and optimization methods have been applied to the Power system stabilizers (PSSs) design problem recently. Each categorization contains a number of design techniques that increase the PSS's effectiveness and sturdiness in damping off low frequency vibrations. This work presents a new Modified and Improved Biogeography-Based Optimization (MIBBO) method to increase the optimization effectiveness of the usual Biogeography-Based Optimization (BBO) technique applied for the optimization of the parameters of the PSSs & Proportional Integral Derivative (PID) controller under the non-linear loading (NLL) conditions. The performance parameters which are obtained by the MIBBO based controller are compared with the results of normal BBO Method, Particle Swarm Optimization method (PSO) and Adaptation Law (AL) method. To justify the success and correctness of the proposed control approach, Matlab simulation results-based study of all the above-mentioned techniques is made and reported

    A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment

    Get PDF
    [Abstract] The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno–economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth.S.K. would like to thank J.P. for providing guidance and funding for the research study through J510050002—IC—6— BOLDREFRESH2025—CENTRE OF EXCELLENCE from the iRMC of Universiti Tenaga Nasional, Malaysia. H.N.A. thanks the Xunta de Galicia (Spain) for the postdoctoral fellowship (ED 481B-2016/195-0, ED481D 2019/033). E.R.R. thanks the IHE Delft Institute for Water Education for providing staff, time, and support under the project “Support to Society”, to collaborate with researchers from Malaysia, Nigeria and SpainMalasia. Universiti Tenaga Nasional; J510050002–IC–6 BOLDREFRESH2025-CENTER OF EXCELLENCEXunta de Galicia; ED 481B-2016/195-0Xunta de Galicia; ED481D 2019/03

    Optimal operation of stand-alone microgrid considering emission issues and demand response program using whale optimization Algorithm

    Get PDF
    Microgrids are new technologies for integrating renewable energies into power systems. Optimal operation of renewable energy sources in standalone micro-grids is an intensive task due to the continuous variation of their output powers and intermittant nature. This work addresses the optimum operation of an independent microgrid considering the demand response program (DRP). An energy management model with two different scenarios has been proposed to minimize the costs of operation and emissions. Interruptible/curtailable loads are considered in DRPs. Besides, due to the growing concern of the developing efficient optimization methods and algorithms in line with the increasing needs of microgrids, the focus of this study is on using the whale meta-heuristic algorithm for operation management of microgrids. The findings indicate that the whale optimization algorithm outperforms the other known algorithms such as imperialist competitive and genetic algorithms, as well as particle swarm optimization. Furthermore, the results show that the use of DRPS has a significant impact on the costs of operation and emissions

    A review of the sustainable utilization of rice residues for bioenergy conversion using different valorization techniques, their challenges, and techno-economic assessment.

    Get PDF
    The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno–economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth

    Construction novel highly active photocatalytic H2 evolution over noble-metal-free trifunctional Cu3P/CdS nanosphere decorated g-C3N4 nanosheet

    Get PDF
    Hydrogen energy possesses immense potential in developing a green renewable energy system. However, a significant problem still exists in improving the photocatalytic H2 production activity of metal-free graphitic carbon nitride (g-C3N4) based photocatalysts. Here is a novel Cu3P/CdS/g-C3N4 ternary nanocomposite for increasing photocatalytic H2 evolution activity. In this study, systematic characterizations have been carried out using techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), Raman spectra, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area analysis (BET), electrochemical impedance (EIS), and transient photocurrent response measurements. Surprisingly, the improved 3CP/Cd-6.25CN photocatalyst displays a high H2 evolution rate of 125721 ÎŒmol h−1 g−1. The value obtained exceeds pristine g-C3N4 and Cu3P/CdS by 339.8 and 7.6 times, respectively. This could be the maximum rate of hydrogen generation for a g–C3N4–based ternary nanocomposite ever seen when exposed to whole solar spectrum and visible light (λ > 420 nm). This research provides fresh perspectives on the rational manufacture of metal-free g-C3N4 based photocatalysts that will increase the conversion of solar energy. By reusing the used 3CP/Cd/g-C3N4 photocatalyst in five consecutive runs, the stability of the catalyst was investigated, and their individual activity in the H2 production activity was assessed. To comprehend the reaction mechanisms and emphasise the value of synergy between the three components, several comparison systems are built

    Harnessing nature’s ingenuity: A comprehensive exploration of nanocellulose from production to cutting-edge applications in engineering and sciences

    Get PDF
    Primary material supply is the heart of engineering and sciences. The depletion of natural resources and an increase in the human population by a billion in 13 to 15 years pose a critical concern regarding the sustainability of these materials; therefore, functionalizing renewable materials, such as nanocellulose, by possibly exploiting their properties for various practical applications, has been undertaken worldwide. Nanocellulose has emerged as a dominant green natural material with attractive and tailorable physicochemical properties, is renewable and sustainable, and shows biocompatibility and tunable surface properties. Nanocellulose is derived from cellulose, the most abundant polymer in nature with the remarkable properties of nanomaterials. This article provides a comprehensive overview of the methods used for nanocellulose preparation, structure–property and structure–property correlations, and the application of nanocellulose and its nanocomposite materials. This article differentiates the classification of nanocellulose, provides a brief account of the production methods that have been developed for isolating nanocellulose, highlights a range of unique properties of nanocellulose that have been extracted from different kinds of experiments and studies, and elaborates on nanocellulose potential applications in various areas. The present review is anticipated to provide the readers with the progress and knowledge related to nanocellulose. Pushing the boundaries of nanocellulose further into cutting-edge applications will be of particular interest in the future, especially as cost-effective commercial sources of nanocellulose continue to emerge

    Potential coolants for fuel cell application: Multi-objective optimization of thermophysical properties and PPF calculation of hybrid palm oil nanofluids

    Get PDF
    In this study, Response Surface Methodology (RSM) is being used to optimize density, viscosity, and thermal conductivity in CuO-polyaniline/palm oil hybrid nanofluids. Using a Central Composite Design (CCD) within RSM, researchers are systematically exploring the impact of temperature (ranging from 30 to 60 °C), volume concentration of nanoadditives (varying from 0.1 to 0.5 vol%) and CuO composition (ranging from 1 to 10 wt%) on the thermophysical properties of these nanofluids. This research is pioneering in its evaluation of the price performance factor (PPF) for these nanofluids. To ensure model reliability, Analysis of Variance (ANOVA) is being applied. The findings showcase robust models, as indicated by a 45° angle line within the predicted vs. actual data graph. The models exhibit impressive R2 values: 98.66 % for density, 99.93 % for viscosity, and 99.91 % for thermal conductivity, underscoring the agreement between predicted and actual data. Optimal values for density, viscosity, and thermal conductivity are being obtained: 0.901532 g/mL, 37.1229 mPa s, and 0.356891 W/mK, respectively. These correspond to critical parameters of 53.92 °C for temperature, 0.038 vol% for volume concentration of nanoadditives and 2.90 wt% for CuO composition. Moreover, the price performance factor (PPF) assessment reveals that higher thermal conductivity doesn't necessarily equate to greater cost-effectiveness

    Multi-objective optimization and price performance factor evaluation of polyaniline nanofibers-palm oil nanofluids for thermal energy storage application

    Get PDF
    The application of nanofluid in thermal energy storage technology has attracted interest among researchers in the development of novel nanofluids with high thermal conductivity behavior. Therefore, it is crucial to study the thermal physical behavior of formulated nanofluids prior to extend use in greener energy production. In this study, response surface methodology (RSM) is employed to optimize the density, viscosity and thermal conductivity behavior of formulated polyaniline-palm oil nanofluids. RSM based central composite design (CCD) is applied to extract the significant impact of temperature in the range of 30–60 °C and volume concentration of nanoadditives in the range of 0.01–0.5 vol% to the thermal physical properties of polyaniline-palm oil nanofluids and to generate empirical mathematical model for prediction purpose. Finally, the price performance factor of the studied polyaniline-palm oil nanofluids is evaluated for the first time in this research. Analysis of variance is employed to verify that the generated mathematical regression model is reliable. The formation of 45° angle line in the middle of the predicted vs actual data graph with acceptable R2 of 94.43% for density model, 99.43% for viscosity model, and 94.18% for the thermal conductivity model showing an excellent agreement of both predicted and actual data and verified the reliability of the generated regression equation for response prediction. Optimal density, viscosity and thermal conductivity of polyaniline-palm oil nanofluids found to be 0.8878 g/mL, 25.8251 mPa s and 0.2877 W/mK respectively with the critical parameters for temperature and volume concentration of polyaniline are 60 °C and 0.0347 vol% respectively. The PPF evaluation shows that the higher thermal conductivity of nanofluids are not economical. The formulated polyaniline-palm oil nanofluid evaluated properties expose the possibility of alternative advanced heat transfer fluid for thermal energy storage application due to their superior inherent qualities

    Energizing the thermophysical properties of phase change material using carbon-based nano additives for sustainable thermal energy storage application in photovoltaic thermal systems

    Get PDF
    As solar energy are intermittent in nature and not predictable, researchers and scientists are actively developing efficient thermal energy storage (TES) systems intending to maximize the utilization of solar energy. Phase change materials (PCM) are potential materials that are largely accessed towards TES. However, the notable drawback of PCM is their lower thermal conductivity, leading to slower heat transfer rates and reduced thermal energy storage density. Thus, the current study focuses on developing and exploring a PCM composite by embedding paraffin wax and graphene to enhance the heat transfer mechanisms, making it a promising option for TES applications. Various aspects of the composite's performance were examined, including its microstructural behaviour, chemical stability, thermal stability, thermal conductivity, thermal reliability, and heat transfer characteristics. The findings revealed that the inclusion of graphene led to a substantial increase of up to 75.09 % in thermal conductivity while preserving the melting enthalpy of the material. The newly developed nanocomposite also demonstrated chemically and thermally stable up to a temperature of 210 °C, and the thermal stability was slightly enhanced by adding nanoparticles. This nanocomposite also exhibited improved optical absorptance and reduced transmittance, enhancing its potential for solar energy absorption. It further demonstrated durability, maintaining stability even after undergoing 500 thermal cycles. Notably, the overall efficiency of the nano-enhanced PCM integrated photovoltaic-thermal system (PVT) enhanced by 29 % and 49 % greater than the PVT system and conventional PV system. Given these exceptional characteristics and performance enhancements, this nanocomposite material holds promise for significantly advancing future sustainable TES technologies
    corecore