19 research outputs found

    Online parameter estimation in dynamic Markov Random Fields for image sequence analysis

    Get PDF
    pre-printMarkov Random Fields (MRF) have proven to be extremely useful models for efficient and accurate image segmentation.Recent literature points to an increased effort towards incorporating useful priors (shape, geometry, context) in a MRF framework. However, topological priors, considered extremely crucial in biological and natural image sequences have been less explored. This work proposes a strategy wherein free parameters of the MRF are used to make it topology aware using a semantic graphical model working in conjunction with the MRF. Estimation of free parameters is constrained by prior knowledge of an object's topological dynamics encoded by the graphical model. Maximizing a regional conformance measure yields parameters for the frame under consideration. The application motivating this work is the tracing of neuronal structures across 3D serial section Transmission Electron Micrograph (ssTEM) stacks. Applicability of the proposed method is demonstrated by tracing 3D structures in ssTEM stacks

    Large Scale Visual Recommendations From Street Fashion Images

    Full text link
    We describe a completely automated large scale visual recommendation system for fashion. Our focus is to efficiently harness the availability of large quantities of online fashion images and their rich meta-data. Specifically, we propose four data driven models in the form of Complementary Nearest Neighbor Consensus, Gaussian Mixture Models, Texture Agnostic Retrieval and Markov Chain LDA for solving this problem. We analyze relative merits and pitfalls of these algorithms through extensive experimentation on a large-scale data set and baseline them against existing ideas from color science. We also illustrate key fashion insights learned through these experiments and show how they can be employed to design better recommendation systems. Finally, we also outline a large-scale annotated data set of fashion images (Fashion-136K) that can be exploited for future vision research

    HD-CNN: Hierarchical Deep Convolutional Neural Network for Large Scale Visual Recognition

    Get PDF
    In image classification, visual separability between different object categories is highly uneven, and some categories are more difficult to distinguish than others. Such difficult categories demand more dedicated classifiers. However, existing deep convolutional neural networks (CNN) are trained as flat N-way classifiers, and few efforts have been made to leverage the hierarchical structure of categories. In this paper, we introduce hierarchical deep CNNs (HD-CNNs) by embedding deep CNNs into a category hierarchy. An HD-CNN separates easy classes using a coarse category classifier while distinguishing difficult classes using fine category classifiers. During HD-CNN training, component-wise pretraining is followed by global finetuning with a multinomial logistic loss regularized by a coarse category consistency term. In addition, conditional executions of fine category classifiers and layer parameter compression make HD-CNNs scalable for large-scale visual recognition. We achieve state-of-the-art results on both CIFAR100 and large-scale ImageNet 1000-class benchmark datasets. In our experiments, we build up three different HD-CNNs and they lower the top-1 error of the standard CNNs by 2.65%, 3.1% and 1.1%, respectively.Comment: Add new results on ImageNet using VGG-16-layer building block ne

    Fashion apparel detection: The role of deep convolutional neural network and pose-dependent priors

    No full text
    In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on. The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method which combines object proposal methods with a Deep Convolutional Neural Network. Since the locations of fashion items are in strong correlation with the locations of body joints positions, we propose a hy-brid discriminative-generative model to incorporate con-textual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate that our algorithm outperforms baseline meth-ods with a large margin. 1
    corecore