2 research outputs found
Invariant Differential Operators and Characters of the AdS_4 Algebra
The aim of this paper is to apply systematically to AdS_4 some modern tools
in the representation theory of Lie algebras which are easily generalised to
the supersymmetric and quantum group settings and necessary for applications to
string theory and integrable models. Here we introduce the necessary
representations of the AdS_4 algebra and group. We give explicitly all singular
(null) vectors of the reducible AdS_4 Verma modules. These are used to obtain
the AdS_4 invariant differential operators. Using this we display a new
structure - a diagram involving four partially equivalent reducible
representations one of which contains all finite-dimensional irreps of the
AdS_4 algebra. We study in more detail the cases involving UIRs, in particular,
the Di and the Rac singletons, and the massless UIRs. In the massless case we
discover the structure of sets of 2s_0-1 conserved currents for each spin s_0
UIR, s_0=1,3/2,... All massless cases are contained in a one-parameter
subfamily of the quartet diagrams mentioned above, the parameter being the spin
s_0. Further we give the classification of the so(5,C) irreps presented in a
diagramatic way which makes easy the derivation of all character formulae. The
paper concludes with a speculation on the possible applications of the
character formulae to integrable models.Comment: 30 pages, 4 figures, TEX-harvmac with input files: amssym.def,
amssym.tex, epsf.tex; version 2 1 reference added; v3: minor corrections;
v.4: minor corrections, v.5: minor corrections to conform with version in J.
Phys. A: Math. Gen; v.6.: small correction and addition in subsections 4.1 &
4.
