114 research outputs found

    The Nucleon ``Tensor Charges'' and the Skyrme Model

    Full text link
    The lowest moment of the twist-two, chiral-odd parton distribution h1(x)h_1(x) of the nucleon can be related to the so-called ``tensor charges'' of the nucleon. We consider the tensor charges in the Skyrme model, and find that in the large-NcN_c, SU(3)-symmetric limit, the model predicts that the octet isosinglet tensor charge, gT8g^8_T, is of order 1/Nc1/N_c with respect to the octet isovector tensor charge, gT3g^3_T. The predicted F/DF/D ratio is then 1/3, in the large-NcN_c limit. These predictions coincide with the Skyrme model predictions for the octet axial{\it axial} charges, gA8g^8_A and gA3g^3_A. (The prediction F/D=1/3F/D=1/3 for the axial charges differs from the commonly quoted prediction of 5/9, which is based on an inconsistent treatment of the large-NcN_c limit.) The model also predicts that the singlet tensor charge, gT0g^0_T, is of order 1/Nc1/N_c with respect to gT3g^3_T.Comment: 9 single-spaced pages, no figures, MIT-CTP-212

    Very Small Strangelets

    Full text link
    We study the stability of small strangelets by employing a simple model of strange matter as a gas of non-interacting fermions confined in a bag. We solve the Dirac equation and populate the energy levels of the bag one quark at a time. Our results show that for system parameters such that strange matter is unbound in bulk, there may still exist strangelets with A<100A<100 that are stable and/or metastable. The lifetime of these strangelets may be too small to detect in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family ΌPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from ¶1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family ΌM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures ΌM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    SU(2) WZW Theory at Higher Genera

    Full text link
    We compute, by free field techniques, the scalar product of the SU(2) Chern-Simons states on genus > 1 surfaces. The result is a finite-dimensional integral over positions of ``screening charges'' and one complex modular parameter. It uses an effective description of the CS states closely related to the one worked out by Bertram. The scalar product formula allows to express the higher genus partition functions of the WZW conformal field theory by finite-dimensional integrals. It should provide the hermitian metric preserved by the Knizhnik-Zamolodchikov-Bernard connection describing the variations of the CS states under the change of the complex structure of the surface.Comment: 44 pages, IHES/P/94/10, Latex fil

    Curvature energy effects on strange quark matter nucleation at finite density

    Full text link
    We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.Comment: PlainTex, 6 pp., IAG-USP Rep.5

    Radiation from Excited Vortex in the Abelian Higgs Model

    Get PDF
    Excitation of a vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation can be regarded as a longitudinal component of the vector field trapped by the vortex. The energy and profile of the excitation are found. Back-reaction of the excitation on the vortex is calculated in the small Îș\kappa limit. It turns out that in the presence of the excitation the vortex effectively becomes much wider - its radius oscillates in time and for all times it is not smaller than the radius of the unexcited vortex. Moreover, we find that the vector field of the excited vortex has long range radiative component. Bound on the amplitude of the excitation is also found.Comment: Latex, 20 pages. 2 figures attached as .uu file to be decoded and used as input for epsfbox command which is already included in the main Latex fil

    Inverse meson mass ordering in color-flavor-locking phase of high density QCD: erratum

    Get PDF
    We correct a mistake in the calculation of meson masses at large baryon chemical potential made in hep-ph/9910491v2Comment: 2 pages, 1 figure, erratum to hep-ph/9910491v

    Regge Trajectories for Mesons in the Holographic Dual of Large-N_c QCD

    Full text link
    We discuss Regge trajectories of dynamical mesons in large-N_c QCD, using the supergravity background describing N_c D4-branes compactified on a thermal circle. The flavor degrees of freedom arise from the addition of N_f<<N_c D6 probe branes. Our work provides a string theoretical derivation, via the gauge/string correspondence, of a phenomenological model describing the meson as rotating point-like massive particles connected by a flux string. The massive endpoints induce nonlinearities for the Regge trajectory. For light quarks the Regge trajectories of mesons are essentially linear. For massive quarks our trajectories qualitatively capture the nonlinearity detected in lattice calculations.Comment: 21 pages, 4 figures. v2: typos corrected, references and acknowledgments adde

    Masses of Multiquark Droplets

    Full text link
    The mass formulae for finite lumps of strange quark matter with uu, dd and ss quarks, and non-strange quark matter consisting of uu and dd quarks are derived in a non-relativistic potential model. The finite-size effects comprising the surface, curvature and even, the Gauss curvature were consistently obtained, which shows a converging trend. It is found that there is a possibility for the formation of metastable strangelets of large mass. The model predicts low charge to mass ratio as the characteristic signature of strange matter in agreement with the relativistic studies. This study also yields an independent estimate for the bag energy density BB, which is in agreement with the M.I.T bag model value.Comment: 24pages + 5 figures available upon request,Latex,IP/BBSR/93-3

    Chiral Soliton Model vs Pentaquark Structure for \Theta (1540)

    Get PDF
    The exotic baryon Θ+\Theta^+ (1540 MeV)isvisualisedasanexpected(iso)rotationalexcitationintheChiralSolitonModel.ItisalsoarguedasaPentaquarkbaryonstateinaconstituentquarkmodelwithstrongdiquarkcorrelations.Icontrastthetwopointsofview;thesimilaritiesanddifferencesbetweenthetwopictures.Collectiveexcitation,characteristicofChiralSolitonModelpointstowardsmallmixingofrepresentationsinthewakeofSU(3)breaking.Incontrast,ConstituentquarkModelsprefernear‘‘idealâ€Čâ€Čmixing,similarto is visualised as an expected (iso) rotational excitation in the Chiral Soliton Model. It is also argued as a Pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast the two points of view; the similarities and differences between the two pictures. Collective excitation, characteristic of Chiral Soliton Model points toward small mixing of representations in the wake of SU(3) breaking. In contrast, Constituent quark Models prefer near ``ideal'' mixing, similar to \omega - \phi$ mixing.Comment: 11 pages, references added, final published versio
    • 

    corecore