7 research outputs found

    Effects of Backpack Loads on Kids Posture

    Get PDF
    Kids carrying heavy loads as a part of everyday activity may be related to bend their trunks forward to maintain body posture and balance while walking. This study was to determine a correlation between the weight of a child's backpack, their body weight, and certain features of their body posture. The study group consisted of 6 children, in age of primary school. The anthropometry (age, length, weight) were taken for each volunteers. A school backpack was specially built for the present study. Walking gait was filmed in three cases: (zero kg, 3 kg and 6 kg) backpack. Posture was analyzed by using (Kenova and MATLAB) computer programs. The results show that the forward inclination of the trunk increases when the load and the walking distance are increased, this forward inclination segment may impose greater stress over the vertebral column (ligaments and intervertebral disks) and increase the risk of back problems. Spine and back health may be adversely affected by load carriage and it may be important to use spinal curvature as a measure of posture for load carriage. This study shows that the backpack load cause a lumbar asymmetry by 10 to 20 degree according to the load which has a significant amount of back pain in kids

    A BiomechanicalModel Study of the Rat as a Medial Collateral Ligaments of the Knee

    Get PDF
    Ligament primarily stabilizes the diarthrodial joints and function to provide stability and support during the motion of diarthrodial joints. These functions are assisted by the congruent geometry of the articulating joint surfaces and musculotendinous forces. Ligament exhibits viscoelastic, or time-dependent behavior, like many tissues in the body. From the medical point of view an understanding of the biomechanics of ligaments are crucial for the understanding of injury mechanisms and to evaluate existing surgical repair techniques. The mode of failure in ligaments depends strongly on the rate of loading. Thus, ligament viscoelasticity is an important determinant of tissue response to loading, and viscous dissipation by the tissue modulates the potential for injury. Many mathematical models have been developed to describe the complexity of these behaviors that could include the microphysical interactions of various constituents but none of them seems to represents the overall properties of these structures. Models can be an important tool in understanding tissue structure-function relationships and elucidating the effects of injury, healing, and treatment. The main objective of this work is to study from the biomechanical point of view, the behaviour of an example of the medial collateral ligament in response to stress and strain effects to evaluate the biological behaviour of the ligament. The strain effect as example of the modified superposition method and analyze the results and the model that can express the medial collateral ligament behaviou

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    No full text
    corecore