40 research outputs found

    Accelerated materials language processing enabled by GPT

    Full text link
    Materials language processing (MLP) is one of the key facilitators of materials science research, as it enables the extraction of structured information from massive materials science literature. Prior works suggested high-performance MLP models for text classification, named entity recognition (NER), and extractive question answering (QA), which require complex model architecture, exhaustive fine-tuning and a large number of human-labelled datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines where the complex architectures of prior MLP models are replaced with strategic designs of prompt engineering. First, we develop a GPT-enabled document classification method for screening relevant documents, achieving comparable accuracy and reliability compared to prior models, with only small dataset. Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance on most of entities in three open datasets. Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations. While our findings confirm the potential of GPT-enabled MLP models as well as their value in terms of reliability and practicability, our scientific methods and systematic approach are applicable to any materials science domain to accelerate the information extraction of scientific literature

    Analyzing and Improving Optimal-Transport-based Adversarial Networks

    Full text link
    Optimal Transport (OT) problem aims to find a transport plan that bridges two distributions while minimizing a given cost function. OT theory has been widely utilized in generative modeling. In the beginning, OT distance has been used as a measure for assessing the distance between data and generated distributions. Recently, OT transport map between data and prior distributions has been utilized as a generative model. These OT-based generative models share a similar adversarial training objective. In this paper, we begin by unifying these OT-based adversarial methods within a single framework. Then, we elucidate the role of each component in training dynamics through a comprehensive analysis of this unified framework. Moreover, we suggest a simple but novel method that improves the previously best-performing OT-based model. Intuitively, our approach conducts a gradual refinement of the generated distribution, progressively aligning it with the data distribution. Our approach achieves a FID score of 2.51 on CIFAR-10 and 5.99 on CelebA-HQ-256, outperforming unified OT-based adversarial approaches.Comment: 27 pages, 17 figure

    Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport

    Full text link
    Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a given cost function. In this regard, OT between tractable prior distribution and data has been utilized for generative modeling tasks. However, OT-based methods are susceptible to outliers and face optimization challenges during training. In this paper, we propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT). Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence. We validate these properties empirically through experiments. Moreover, we study the theoretical upper-bound of divergence between distributions in UOT. Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 5.80 on CelebA-HQ-256.Comment: 23 pages, 15 figure

    Finding the global semantic representation in GAN through Frechet Mean

    Full text link
    The ideally disentangled latent space in GAN involves the global representation of latent space with semantic attribute coordinates. In other words, considering that this disentangled latent space is a vector space, there exists the global semantic basis where each basis component describes one attribute of generated images. In this paper, we propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs. This semantic basis represents sample-independent meaningful perturbations that change the same semantic attribute of an image on the entire latent space. The proposed global basis, called Fr\'echet basis, is derived by introducing Fr\'echet mean to the local semantic perturbations in a latent space. Fr\'echet basis is discovered in two stages. First, the global semantic subspace is discovered by the Fr\'echet mean in the Grassmannian manifold of the local semantic subspaces. Second, Fr\'echet basis is found by optimizing a basis of the semantic subspace via the Fr\'echet mean in the Special Orthogonal Group. Experimental results demonstrate that Fr\'echet basis provides better semantic factorization and robustness compared to the previous methods. Moreover, we suggest the basis refinement scheme for the previous methods. The quantitative experiments show that the refined basis achieves better semantic factorization while constrained on the same semantic subspace given by the previous method.Comment: 25 pages, 21 figure

    Analyzing the Latent Space of GAN through Local Dimension Estimation

    Full text link
    The impressive success of style-based GANs (StyleGANs) in high-fidelity image synthesis has motivated research to understand the semantic properties of their latent spaces. In this paper, we approach this problem through a geometric analysis of latent spaces as a manifold. In particular, we propose a local dimension estimation algorithm for arbitrary intermediate layers in a pre-trained GAN model. The estimated local dimension is interpreted as the number of possible semantic variations from this latent variable. Moreover, this intrinsic dimension estimation enables unsupervised evaluation of disentanglement for a latent space. Our proposed metric, called Distortion, measures an inconsistency of intrinsic tangent space on the learned latent space. Distortion is purely geometric and does not require any additional attribute information. Nevertheless, Distortion shows a high correlation with the global-basis-compatibility and supervised disentanglement score. Our work is the first step towards selecting the most disentangled latent space among various latent spaces in a GAN without attribute labels

    Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry

    Full text link
    Despite the success of diffusion models (DMs), we still lack a thorough understanding of their latent space. To understand the latent space xtX\mathbf{x}_t \in \mathcal{X}, we analyze them from a geometrical perspective. Specifically, we utilize the pullback metric to find the local latent basis in X\mathcal{X} and their corresponding local tangent basis in H\mathcal{H}, the intermediate feature maps of DMs. The discovered latent basis enables unsupervised image editing capability through latent space traversal. We investigate the discovered structure from two perspectives. First, we examine how geometric structure evolves over diffusion timesteps. Through analysis, we show that 1) the model focuses on low-frequency components early in the generative process and attunes to high-frequency details later; 2) At early timesteps, different samples share similar tangent spaces; and 3) The simpler datasets that DMs trained on, the more consistent the tangent space for each timestep. Second, we investigate how the geometric structure changes based on text conditioning in Stable Diffusion. The results show that 1) similar prompts yield comparable tangent spaces; and 2) the model depends less on text conditions in later timesteps. To the best of our knowledge, this paper is the first to present image editing through x\mathbf{x}-space traversal and provide thorough analyses of the latent structure of DMs

    Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs

    Full text link
    The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it.Comment: 23 pages, 19 figure

    Environment-Detection-and-Mapping Algorithm for Autonomous Driving in Rural or Off-Road Environment

    Full text link
    Abstract—This paper presents an environment-detection-and-mapping algorithm for autonomous driving that is provided in real time and for both rural and off-road environments. Environment-detection-and-mapping algorithms have been de-signed to consist of two parts: 1) lane, pedestrian-crossing, and speed-bump detection algorithms using cameras and 2) obstacle detection algorithm using LIDARs. The lane detection algorithm returns lane positions using one camera and the vision module “VisLab Embedded Lane Detector (VELD), ” and the pedestrian-crossing and speed-bump detection algorithms return the position of pedestrian crossings and speed bumps. The obstacle detection algorithm organizes data from LIDARs and generates a local obstacle position map. The designed algorithms have been im-plemented on a passenger car using six LIDARs, three cameras, and real-time devices, including personal computers (PCs). Vehicle tests have been conducted, and test results have shown that the vehicle can reach the desired goal with the proposed algorithm. Index Terms—Autonomous driving, lane detection, obstacle de-tection, pedestrian-crossing detection, speed-bump detection. I
    corecore