12 research outputs found

    A Novel Multi Slit X-Ray Backscatter Camera Based on Synthetic Aperture Focusing

    Get PDF
    A special slit collimator was developed earlier for fast acquisition of X-ray back scatter images. The design was based on a twisted slit design (ruled surfaces) in a Tungsten block to acquire backscatter images. The comparison with alternative techniques as the flying spot and the coded aperture pin hole technique could not prove the expected higher contrast sensitivity. In analogy to the coded aperture technique, a novel multi slit camera was designed and tested. Several twisted slits were parallelly arranged in a metal block. The CAD design of different multi-slit cameras was evaluated and optimized by the computer simulation packages aRTist and McRay. The camera projects a set of equal images per slit to the digital detector array, which are overlaying each other. Afterwards, the aperture is corrected based on a deconvolution algorithm to focus the overlaying projections into a single representation of the object. Furthermore, a correction of the geometrical distortions due to the slit geometry is performed. The expected increase of the contrast-to-noise ratio is proportional to the square root of the number of parallel slits in the camera. However, additional noise has to be considered originating from the deconvolution operation. The slit design, functional principle, and the expected limits of this technique will be discussed

    Radiographic Visibility Limit of Pores in Metal Powder for Additive Manufacturing

    No full text
    The quality of additively manufactured (AM) parts is determined by the applied process parameters used and the properties of the feedstock powder. The influence of inner gas pores in feedstock particles on the final AM product is a phenomenon which is difficult to investigate since very few non-destructive measurement techniques are accurate enough to resolve the micropores. 3D X-ray computed tomography (XCT) is increasingly applied during the process chain of AM parts as a non-destructive monitoring and quality control tool and it is able to detect most of the pores. However, XCT is time-consuming and limited to small amounts of feedstock powder, typically a few milligrams. The aim of the presented approach is to investigate digital radiography of AM feedstock particles as a simple and fast quality check with high throughput. 2D digital radiographs were simulated in order to predict the visibility of pores inside metallic particles for different pore and particle diameters. An experimental validation was performed. It was demonstrated numerically and experimentally that typical gas pores above a certain size (here: 3 to 4.4 µm for the selected X-ray setup), which could be found in metallic microparticles, were reliably detected by digital radiography

    XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution

    No full text
    Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed

    XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution

    No full text
    Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed

    A Novel Multi Slit X-Ray Backscatter Camera Based on Synthetic Aperture Focusing

    Get PDF
    A special slit collimator was developed earlier for fast acquisition of X-ray back scatter images. The design was based on a twisted slit design (ruled surfaces) in a Tungsten block to acquire backscatter images. The comparison with alternative techniques as the flying spot and the coded aperture pin hole technique could not prove the expected higher contrast sensitivity. In analogy to the coded aperture technique, a novel multi slit camera was designed and tested. Several twisted slits were parallelly arranged in a metal block. The CAD design of different multi-slit cameras was evaluated and optimized by the computer simulation packages aRTist and McRay. The camera projects a set of equal images per slit to the digital detector array, which are overlaying each other. Afterwards, the aperture is corrected based on a deconvolution algorithm to focus the overlaying projections into a single representation of the object. Furthermore, a correction of the geometrical distortions due to the slit geometry is performed. The expected increase of the contrast-to-noise ratio is proportional to the square root of the number of parallel slits in the camera. However, additional noise has to be considered originating from the deconvolution operation. The slit design, functional principle, and the expected limits of this technique will be discussed.</p
    corecore