10 research outputs found

    Influences of large sets of environmental exposures on immune responses in healthy adult men

    Get PDF
    Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their "spacecraft" after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity

    Early detection of Varicella-Zoster Virus (VZV)-specific T-cells before seroconversion in primary varicella infection: case report

    Get PDF
    Here we report the case of a 54-year old, immunocompetent German patient with primary varicella whose Varicella-Zoster Virus (VZV)-specific T-cell responses could be detected early in infection and before the onset of seroconversion. This case demonstrates that the detection of VZV-specific T-cells may under certain circumstances support the diagnosis of a primary varicella infection, as for example in cases of atypical or subclinical varicella or in the absence of detectable VZV DNA in plasma

    Influences of large sets of environmental exposures on immune responses in healthy adult men

    Get PDF
    Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their "spacecraft" after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity

    A novel indirect immunofluorescence test for the detection of IgG and IgA antibodies for diagnosis of Hepatitis E Virus infections

    Full text link
    Hepatitis E Virus (HEV) causes epidemic infections in regions of poor hygiene in the developing world. Over the last years, however, increasing numbers of autochthonous infections in industrialized countries have been described, leading to new interest in this pathogen. Currently available serological test formats to detect IgG and IgM antibodies are mainly based on bacterially expressed ORF2 and ORF3 antigens and often give ambiguous results. The objective of this study was the development of a different assay format for HEV diagnosis—a HEV immunofluorescence test (HEV-IFT) based on mammalian cells transiently expressing recombinant HEV ORF2 protein with a simple production and staining protocol and the investigation of its performance and methodical feasibility under diagnostic laboratory conditions. 31 sera of patients at different phases of HEV infection and 40 control sera from a non-endemic region were analyzed for anti-HEV IgG, IgM, and IgA antibodies. The HEV-IFT detected successfully anti-HEV IgG and IgA, but not anti-HEV IgM antibodies. In the study group the HEV-IFT was able to confirm HEV infections and to support diagnosis when ambiguous results were obtained by commercial assays. Signal localization and staining patterns helped to gather additional information about reactive antibodies present in patient sera. In conclusion the developed IFT for the detection of anti-HEV IgG and IgA antibodies can be used for diagnosis and for the serological confirmation of HEV infections.Fil: Osterman, Andreas. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; AlemaniaFil: Vizoso Pinto, María Guadalupe. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Jung, Jette. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; AlemaniaFil: Jaeger, Gundula. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; AlemaniaFil: Eberle, Josef. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; AlemaniaFil: Nitschko, Hans. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; AlemaniaFil: Baiker, Armin. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute; Alemania. Bavarian Health and Food Safety Authority; Alemani

    Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices

    Full text link
    Forisomes are mechanoproteins that undergo ATP-independent contraction-expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices

    Artificial Forisomes Are Ideal Models of Forisome Assembly and Activity That Allow the Development of Technical Devices

    Full text link
    Forisomes are protein polymers found in leguminous plants that have the remarkable ability to undergo reversible “muscle-like” contractions in the presence of divalent cations and in extreme pH environments. To gain insight into the molecular basis of forisome structure and assembly, we used confocal laser scanning microscopy to monitor the assembly of fluorescence-labeled artificial forisomes in real time, revealing two distinct assembly processes involving either fiber elongation or fiber alignment. We also used scanning and transmission electron microscopy and X-ray diffraction to investigate the ultrastructure of forisomes, finding that individual fibers are arranged into compact fibril bundles that disentangle with minimal residual order in the presence of calcium ions. To demonstrate the potential applications of artificial forisomes, we created hybrid protein bodies from forisome subunits fused to the B-domain of staphylococcal protein A. This allowed the functionalization of the artificial forisomes with antibodies that were then used to target forisomes to specific regions on a substrate, providing a straightforward approach to develop forisome-based technical devices with precise configurations. The functional contractile properties of forisomes are also better preserved when they are immobilized via affinity reagents rather than by direct contact to the substrate. Artificial forisomes produced in plants and yeast therefore provide an ideal model for the investigation of forisome structure and assembly and for the design and testing of tailored artificial forisomes for technical applications
    corecore