1,061 research outputs found

    Numerical Simulation of Enhanced Mixing in Scramjet Combustor Using Ramp, Tabs and Suction Collar

    Get PDF
    Numerical simulations of the scramjet combustor by using the commercial CFD code Fluent with the coupled implicit method with second-order accurate discretization have been obtained for the reacting flows with the parallel fuel injection (ramp injection) and normal fuel injection (wall injection) schemes. Incorporated in the scramjet combustors are delta tabs and suction collars of two types as means of mixing enhancement. The main mechanism of the tabs and suction collars for mixing enhancement is the generation of streamwise vorticity and providing outstanding flameholding capability along with the induced global instability of the shear layer. The idea has been previously recommended for mixing enhancement of the scramjet combustor, but no experimental or computational data on the combustor performance has been reported, yet. The finite rate reaction model is used for the species transport model that only considers four species, H2, O2, H2O and N2. Vitiated air (mass fraction of O2, H2O, and N2 being 0.198, 0.139, and 0.663, respectively) enters the combustor at Mach number of 2.5 at a stagnation temperature and pressure of 1500 K and 101,325 Pa, respectively. The equivalence ratio is fixed at 0.45 in the present study. An optimization study of the combinations of the tabs and suction collars has been performed. Uninstalled thrust force for the optimal combination which was composed of the relieved ramp, 4 delta tabs, suction collar type I and 4 delta tabs in the fuel inlet scheme produced an additional 73% increase in thrust with only an additional 3.37% loss of the total pressure compared to the ramp injection alone, i.e., the baseline case. The numerical results clearly indicate that the fuel injection schemes investigated in the present study are more efficient than a strut or multi-staged strut and wall injection scheme

    Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion

    Full text link
    The epoxy–imidazole resin system is used to form the anisotropic conducting film. The latent character of the system is very significant. In this study, imidazole (Im) or 2‐methylimidazole (2MI) was encapsulated for the latent curing system to use in the reaction of epoxy resin. Polycaprolactone was used as a wall material, and the solvent evaporation method was used to form the microcapsule using W/O/W emulsion. The shelf life of the microcapsules was studied for the epoxy resin, and the curing behavior of the microcapsules for epoxy resin was examined using a differential scanning calorimeter. The curing times at 150 and 180°C were estimated using an indentation method. The microcapsules of Im or 2MI exhibited a long shelf life for epoxy resin. When comparing the results of the previous methods with the results of this study using the W/O/W emulsion, finer microcapsules were formed and the microcapsule has longer shelf life. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98341/1/38767_ftp.pd

    Experimental Verification of Modal Identification of a High-rise Building Using Independent Component Analysis

    Get PDF
    Abstract Independent component analysis is one of the linear transformation methods based the techniques for separating blind sources from the output signals of the system. Recently, the method has been analytically applied to the identification of mode shapes and modal responses from the output signal of structures. This study aims to experimentally validate the blind source separation using ICA method and propose a novel method for identification of the modal parameters from the decomposed modal responses. The result of the experimental testing on the three-story steel scale model shows that the mode shapes obtained by ICA method are in good agreement with those by the analytical and peak-picking method in the frequency domain. Based on the robust mathematical model, ICA can calculate the natural frequency and damping ratio effectively using the probability distribution function of the instantaneous natural frequency determined by Hilbert transform of the decomposed modal responses and the change in the output covariance. Finally, the validity of the proposed method paves the way for more effective output-only modal identification for assessment of existing steel-concrete buildings

    CLOCIS:Cloud-based conformance testing framework for IoT devices in the future internet

    Get PDF
    In recent years, the Internet of Things (IoT) has not only become ubiquitous in daily life but has also emerged as a pivotal technology across various sectors, including smart factories and smart cities. Consequently, there is a pressing need to ensure the consistent and uninterrupted delivery of IoT services. Conformance testing has thus become an integral aspect of IoT technologies. However, traditional methods of IoT conformance testing fall short of addressing the evolving requirements put forth by both industry and academia. Historically, IoT testing has necessitated a visit to a testing laboratory, implying that both the testing systems and testers must be co-located. Furthermore, there is a notable absence of a comprehensive method for testing an array of IoT standards, especially given their inherent heterogeneity. With a surge in the development of diverse IoT standards, crafting an appropriate testing environment poses challenges. To address these concerns, this article introduces a method for remote IoT conformance testing, underpinned by a novel conceptual architecture termed CLOCIS. This architecture encompasses an extensible approach tailored for a myriad of IoT standards. Moreover, we elucidate the methods and procedures integral to testing IoT devices. CLOCIS, predicated on this conceptual framework, is actualized, and to attest to its viability, we undertake IoT conformance testing and present the results. When leveraging CLOCIS, small and medium-sized enterprises (SMEs) and entities in the throes of IoT service development stand to benefit from a reduced time to market and cost-efficient testing procedures. Additionally, this innovation holds promise for IoT standardization communities, enabling them to champion their standards with renewed vigor

    Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation

    Full text link
    Given that sustainable energy production and advanced wastewater treatment for producing clean water are two major challenges faced by modern society, microalgae make a desirable treatment alternative by providing a renewable biomass feedstock for biofuel production, while treating wastewater as a growth medium. Microalgae have been known to be resilient to the toxic contaminants of highly concentrated organic wastewater (e.g., organic nitrogen, phosphorus, and salinity) and are excellent at sorbing heavy metals and emerging contaminants. Economic and environmental advantages associated with massive algae culturing in wastewater constitute a driving force to promote its utilization as a feedstock for biofuels. However, there are still many challenges to be resolved which have impeded the development of algal biofuel technology at a commercial scale. This review provides an overview of an integrated approach using microalgae for wastewater treatment, CO2 utilization, and biofuel production. The main goal of this article is to promote research in algae technologies by outlining critical needs along the integrated process train, including cultivation, harvesting, and biofuel production. Various aspects associated with design challenges of microalgae production are described and current developments in algae cultivation and pretreatment of algal biomass for biofuel production are also discussed. Furthermore, synergistic coupling of the use of microalgae for advanced wastewater treatment and biofuel production is highlighted in a sustainability context using life cycle analysis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140370/1/ees.2016.0132.pd

    Supplemental greenhouse lighting increased the water use efficiency, crop growth, and cutting production in Cannabis sativa

    Get PDF
    The expanding cannabis production sector faces economic challenges, intensified by freshwater scarcity in the main US production areas. Greenhouse cultivation harnesses sunlight to reduce production costs, yet the impact of greenhouse light levels on crucial production components, such as plant growth, branching, and water use efficiency (WUE), remains poorly understood. This study aimed to assess the effects of combined sunlight and supplemental lighting on the crop’s main production components and leaf gas exchange of Cannabis sativa ‘Suver Haze’ in the vegetative stage. Within a greenhouse, LED lighting provided at intensities of ~150, 300, 500, and 700 µmol m-2 s-1 (18-hour photoperiod), combined with solar radiation, resulted in average daily light integrals of 17.9, 29.8, 39.5, and 51.8 mol m-2 d-1. Increasing light levels linearly increased biomass, leaf area, and the number of branches per plant and square meter, with respective rates of 0.26 g, 32.5 cm2, and 0.41 branches per mole of additional light. As anticipated, crop evapotranspiration increased by 1.8-fold with the increase in light intensity yet crop WUE improved by 1.6-fold when comparing the lowest and highest light treatments. Moreover, water requirements per unit of plant biomass decreased from 0.37 to 0.24 liters per gram when lighting increased from ~18 to 52 mol m-2 d-1, marking a 35% reduction in evapotranspiration. These results were supported by increments in leaf photosynthesis and WUE with light enhancement. Furthermore, our findings indicate that even 52 mol m-2 d-1 of supplemental lighting did not saturate any of the crop responses to light and can be economically viable for cannabis nurseries. In conclusion, light supplementation strongly enhanced photosynthesis and plant growth while increasing WUE. Additionally, a comprehensive discussion highlights the shared physiological mechanisms governing WUE in diverse plant species and their potential for water conservation under enhanced lighting conditions

    Dissection of C. elegans behavioral genetics in 3-D environments

    Get PDF
    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments

    Butterfly in the Esophagus: What Is Wrong?

    Get PDF

    Medical doctors as the captain of a ship: an analysis of medical students’ book reports on Joseph Conrad’s “Lord Jim”

    Get PDF
    Purpose: In South Korean ferry disaster in 2014, the captain abandoned the ship with passengers including high school students still aboard. We noticed the resemblance of abandoning the ship with passengers still aboard the ferry (named the Sewol) and the ship Patna, which was full of pilgrims, in Joseph Conrad’s novel “Lord Jim.” The aim of this study is to see how medical students think about the role of a medical doctor as a captain of a ship by analyzing book reports on Conrad’s “Lord Jim.” Methods: Participants included 49 third-year medical students. Their book reports were analyzed. Results: If placed in the same situation as the character of Jim, 24 students of the 49 respondents answered that they would stay with the passengers, while 18 students indicated they would escape from the ship with the crew. Most of the students thought the role of a doctor in the medical field was like that of a ‘captain.’ The medical students reported that they wanted to be a doctor who is responsible for his or her patients, highly moral, warm-hearted, honest, and with high self-esteem. Conclusion: In conclusion, we found that “Lord Jim” induced the virtue of ‘responsibility’ from the medical students. Consequently, “Lord Jim” could be good teaching material for medical humanities
    corecore