44 research outputs found

    mRNA Expression and RNA Editing (2451 C-to-U) of IL-12 Receptor Ī²2 in Adult Atopic Patients

    Get PDF
    Interleukin (IL)-12 activates T helper (Th) 1 cells to produce interferon (IFN)-Ī³ which inhibits atopic inflammation. IL-12 acts through interaction with its receptor, especially Ī²2 subunit. In several studies, the low production of IFN-Ī³ in peripheral mononuclear cells of atopic patients on response to IL-12 stimulation has been reported. Therefore we investigated the IL-12 receptor Ī²2 (IL-12RĪ²2) mRNA expression and RNA editing, nucleotide 2451 C-to-U conversion, to find the cause of low responsiveness to IL-12 in atopy. Quantitative real time PCR for mRNA expression and sequence analysis for RNA editing were performed in 80 atopic patients and 54 healthy controls. The expression of IL-12RĪ²2 mRNA was significantly lower in atopic patients than healthy controls (p<0.05). In sequence analysis, RNA editing on nucleotide 2451 was not found from either atopic patients or healthy controls. In additional evaluation, there was no relationship between expression of IL-12RĪ²2 mRNA and serum total IgE or blood eosinophil count. Reduced IL-12RĪ²2 mRNA expression in atopic patients indicate the reduced capacity to respond to IL-12 which induce IFN-Ī³ production and this may contribute to Th2-skewed immune response in atopy

    Genome-wide analysis of DNA methylation patterns in horse

    Get PDF
    Background: DNA methylation is an epigenetic regulatory mechanism that plays an essential role in mediating biological processes and determining phenotypic plasticity in organisms. Although the horse reference genome and whole transcriptome data are publically available the global DNA methylation data are yet to be known. Results: We report the first genome-wide DNA methylation characteristics data from skeletal muscle, heart, lung, and cerebrum tissues of thoroughbred (TH) and Jeju (JH) horses, an indigenous Korea breed, respectively by methyl-DNA immunoprecipitation sequencing. The analysis of the DNA methylation patterns indicated that the average methylation density was the lowest in the promoter region, while the density in the coding DNA sequence region was the highest. Among repeat elements, a relatively high density of methylation was observed in long interspersed nuclear elements compared to short interspersed nuclear elements or long terminal repeat elements. We also successfully identified differential methylated regions through a comparative analysis of corresponding tissues from TH and JH, indicating that the gene body regions showed a high methylation density. Conclusions: We provide report the first DNA methylation landscape and differentially methylated genomic regions (DMRs) of thoroughbred and Jeju horses, providing comprehensive DMRs maps of the DNA methylome. These data are invaluable resource to better understanding of epigenetics in the horse providing information for the further biological function analyses.open1

    High Prevalence of Opisthorchis viverrini Infection in a Riparian Population in Takeo Province, Cambodia

    Get PDF
    Opisthorchis viverrini infection was found to be highly prevalent in 3 riverside villages (Ang Svay Chek A, B, and C) of the Prey Kabas District, Takeo Province. This area is located in the southern part of Cambodia, where the recovery of adult O. viverrini worms was recently reported. From May 2006 until May 2010, fecal examinations were performed on a total of 1,799 villagers using the Kato-Katz thick smear technique. In the 3 villages, the overall positive rate for helminth eggs ranged from 51.7 to 59.0% (av. 57.4%), and the percentage positive for O. viverrini was 46.4-50.6% (47.5%). Other helminths detected included hookworms (13.2%), echinostomes (2.9%), Trichuris trichiura (1.3%), Ascaris lumbricoides (0.6%), and Taenia spp. (0.06%). The prevalence of O. viverrini eggs appeared to reflect a lower infection in younger individuals (<20 years) than in the adult population (>20 years). Men (50.4%) revealed a significantly higher (P=0.02) prevalence than women (44.3%). The Ang Svay Chek villages of the Prey Kabas District, Takeo Province, Cambodia have been confirmed to be a highly endemic area for human O. viverrini infection

    Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

    Get PDF
    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre- and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traitsclose

    Serum lipidomic analysis for the discovery of biomarkers for major depressive disorder in drug-free patients.

    No full text
    Lipidomic analysis can be used to efficiently identify hundreds of lipid molecular species in biological materials and has been recently established as an important tool for biomarker discovery in various neuropsychiatric disorders including major depressive disorder (MDD). In this study, quantitative targeted serum lipidomic profiling was performed on female subjects using liquid chromatography-mass spectrometry. Global lipid profiling of pooled serum samples from 10 patients currently with MDD (cMDD), 10 patients with remitted MDD (rMDD), and 10 healthy controls revealed 37 differentially regulated lipids (DRLs). DRLs were further verified using multiple-reaction monitoring (MRM) in each of the 25 samples from the three groups of independent cohorts. Using multivariate analysis and MRM data we identified serum biomarker panels of discriminatory lipids that differentiated between pairs of groups: lysophosphatidic acid (LPA)(16:1), triglycerides (TG)(44:0), and TG(54:8) distinguished cMDD from controls with 76% accuracy; lysophosphatidylcholines(16:1), TG(44:0), TG(46:0), and TG(50:1) distinguished between cMDD and rMDD at 65% accuracy; and LPA(16:1), TG(52:6), TG(54:8), and TG(58:10) distinguished between rMDD and controls with 60% accuracy. Our lipidomic analysis identified peripheral lipid signatures of MDD, which thereby provides providing important biomarker candidates for MDD
    corecore