3,394 research outputs found
On a Stability of Logarithmic-Type Functional Equation in Schwartz Distributions
We prove the Hyers-Ulam stability of the logarithmic functional equation of Heuvers and Kannappan f(x+y)-g(xy)-h(1/x+1/y)=0, x,y>0, in both classical and distributional senses. As a classical sense, the Hyers-Ulam stability of the inequality |f(x+y)-g(xy)-h(1/x+1/y)|≤ϵ, x,y>0 will be proved, where f,g,h:ℝ+→ℂ. As a distributional analogue of the above inequality, the stability of inequality ∥u∘(x+y)-v∘(xy)-w∘(1/x+1/y)∥≤ϵ will be proved, where u,v,w∈'(ℝ+) and ∘ denotes the pullback of distributions
Silicon nanowire devices
Transport measurements were carried out on 15–35 nm diameter silicon nanowires grown using SiH4 chemical vapor deposition via Au or Zn particle-nucleated vapor-liquid-solid growth at 440°C. Both Al and Ti/Au contacts to the wires were investigated. The wires, as produced, were essentially intrinsic, although Au nucleated wires exhibited a slightly higher conductance. Thermal treatment of the fabricated devices resulted in better electrical contacts, as well as diffusion of dopant atoms into the nanowires, and increased the nanowire conductance by as much as 10^4. Three terminal devices indicate that the doping of the wires is p type
The Light and Period Variations of the Eclipsing Binary BX Draconis
New CCD photometric observations of BX Dra were obtained for 26 nights from
2009 April to 2010 June. The long-term photometric behaviors of the system are
presented from detailed studies of the period and light variations, based on
the historical data and our new observations. All available light curves
display total eclipses at secondary minima and inverse O'Connell effects with
Max I fainter than Max II, which are satisfactorily modeled by adding the
slightly time-varying hot spot on the primary star. A total of 87 times of
minimum light spanning over about 74 yrs, including our 22 timing measurements,
were used for ephemeris computations. Detailed analysis of the O-C diagram
showed that the orbital period has changed in combinations with an upward
parabola and a sinusoidal variation. The continuous period increase with a rate
of +5.65 \times 10^-7 d yr^-1 is consistent with that calculated from the
Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from
the secondary to the primary star at a rate of 2.74 \times 10^-7 M\odot yr^-1,
which is one of the largest rates for contact systems. The most likely
explanation of the sinusoidal variation with a period of 30.2 yrs and a
semi-amplitude of 0.0062 d is a light-traveltime effect due to the existence of
a circumbinary object. We suggest that BX Dra is probably a triple system,
consisting of a primary star with a spectral type of F0, its secondary
component of spectral type F1-2, and an unseen circumbinary object with a
minimum mass of M3 = 0.23 M\odot.Comment: 24 pages, including 5 figures and 9 tables, accepted for publication
in PAS
Recommended from our members
Hepatitis C Virus and Hepatocarcinogenesis
Hepatitis C virus (HCV) is an RNA virus that is unable to integrate into the host genome. However, its proteins interact with various host proteins and induce host responses. The oncogenic process of HCV infection is slow and insidious and probably requires multiple steps of genetic and epigenetic alterations, the activation of cellular oncogenes, the inactivation of tumor suppressor genes, and dysregulation of multiple signal transduction pathways. Stellate cells may transdifferentiate into progenitor cells and possibly be linked to the development of hepatocellular carcinoma (HCC). Viral proteins also have been implicated in several cellular signal transduction pathways that affect cell survival, proliferation, migration and transformation. Current advances in gene expression profile and selective messenger RNA analysis have improved approach to the pathogenesis of HCC. The heterogeneity of genetic events observed in HCV-related HCCs has suggested that complex mechanisms underlie malignant transformation induced by HCV infection. Considering the complexity and heterogeneity of HCCs of both etiological and genetic aspects, further molecular classification is required and an understanding of these molecular complexities may provide the opportunity for effective chemoprevention and personalized therapy for HCV-related HCC patients in the future. In this review, we summarize the current knowledge of the mechanisms of hepatocarcinogenesis induced by HCV infection
Kinetic Electron Cooling in Magnetic Nozzles: Experiments and Modeling
As long-distance space travel requires propulsion systems with greater
operational flexibility and lifetimes, there is a growing interest in
electrodeless plasma thrusters that offer the opportunity of improved
scalability, larger throttleability, running on different propellants, and
limit device erosion. The majority of electrodeless designs rely on a magnetic
nozzle (MN) for the acceleration of the plasma, which has the advantage of
utilizing the expanding electrons to neutralize the ion beam without the
additional installation of a cathode. The plasma expansion in the MN is nearly
collisionless, and a fluid description of electrons requires a non-trivial
closure relation. Kinetic electron effects, and in particular electron cooling,
play a crucial role in various physical phenomena such as energy balance, ion
acceleration, and particle detachment. Based on the experimental and
theoretical studies conducted in recognition of this importance, the
fundamental physics of the electron cooling mechanism revealed in MNs and
magnetically expanding plasma are reviewed. Especially, recent approaches from
the kinetic point of view are discussed, and our perspective on the future
challenges of electron cooling and the relevant physical subject of MN is
presented
- …