5,754 research outputs found
Three Qualities of OTT Services: A Mixed Methods Approach
Since over-the-top (OTT) services emerged as a new way of consuming video contents, OTT markets have grown exponentially and the competition among the OTT services has been intensified. Nonetheless, only limited scholarly attention has been paid to identifying user’s motivation to use OTT service. Therefore, we employ a developmental sequential mixed methods approach to identify quality factors and to examine their effect on post-subscription experiences and continuance intention. In a qualitative study, we derived six factors that are important to users’ intention to continue to use the subscription. Based on the identified factors, we develop a research model with three groups of qualities modified from IS success model. The proposed research model will be validated with data collected through a quantitative research with a survey to OTT service users
Pseudogap and weak multifractality in disordered Mott charge-density-wave insulator
The competition, coexistence and cooperation of various orders in
low-dimensional materials like spin, charge, topological orders and
charge-density-wave has been one of the most intriguing issues in condensed
matter physics. In particular, layered transition metal dichalcogenides provide
an ideal platform for studying such an interplay with a notable case of
1-TaS featuring Mott-insulating ground state, charge-density-wave,
spin frustration and emerging superconductivity together. We investigated local
electronic states of Se-substituted 1-TaS by scanning tunneling
microscopy/spectroscopy (STM/STS), where superconductivity emerges from the
unique Mott-CDW state. Spatially resolved STS measurements reveal that an
apparent V-shape pseudogap forms at the Fermi Level (E), with the origin
of the electronic states splitting and transformation from the Mott states, and
the CDW gaps are largely preserved. The formation of the pseudogap has little
correlation to the variation of local Se concentration, but appears to be a
global characteristics. Furthermore, the correlation length of local density of
states (LDOS) diverges at the Fermi energy and decays rapidly at high energies.
The spatial correlation shows a power-law decay close to the Fermi energy. Our
statistics analysis of the LDOS indicates that our system exhibits weak
multifractal behavior of the wave functions. These findings strongly support a
correlated metallic state induced by disorder in our system, which provides an
new insight into the novel mechanism of emerging superconductivity in the
two-dimensional correlated electronic systems
Recommended from our members
Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine
Background: Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing. Thus, in the present study, we aimed to improve the original CLARITY procedure and developed specific CLARITY protocols for various intact organs. Results: We determined the optimal conditions for reducing bubble formation, discoloration, and depositing of black particles on the surface of tissue, which allowed production of clearer organ images. We also determined the appropriate replacement cycles of clearing solution for each type of organ, and convincingly demonstrated that 250–280 mA is the ideal range of electrical current for tissue clearing. We then acquired each type of cleared organs including brain, pancreas, liver, lung, kidney, and intestine. Additionally, we determined the images of axon fibers of hippocampal region, the Purkinje layer of cerebellum, and vessels and cellular nuclei of pancreas. Conclusions: CLARITY is an innovative biochemical technology for the structural and molecular analysis of various types of tissue. We developed improved CLARITY methods for clearing of the brain, pancreas, lung, intestine, liver, and kidney, and identified the appropriate experimental conditions for clearing of each specific tissue type. These optimized methods will be useful for the application of CLARITY to various types of organs. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0048-3) contains supplementary material, which is available to authorized users
Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source
We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting
{\alpha} particles emitted from an 241-Am standard source. The voltage applied
to the ionization region of the detector is optimized for stable operation at
room temperature and atmospheric pressure. The energy of {\alpha} particles
from the 241-Am source can be varied by changing the flight path of the
{\alpha} particle from the 241 Am source. The channel numbers of the
experimentally-measured pulse peak positions for different energies of the
{\alpha} particles are associated with the energies deposited by the alpha
particles in the ionization region of the detector as calculated by using
GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for
{\alpha} particles is done. For the energy calibration, the thickness of the
ionization region is adjusted so that {\alpha} particles may completely stop in
the ionization region and their kinetic energies are fully deposited in the
region. The efficiency of our MICROMEGAS detector for {\alpha} particles under
the present conditions is found to be ~ 97.3 %
AAD-2004, a potent spin trapping molecule and microsomal prostaglandin E synthase-1 inhibitor, shows safety and efficacy in a mouse model of ALS
While free radicals and inflammation constitute major routes of neuronal injury occurring in neurodegenerative diseases, neither antioxidants nor nonsteroidal anti-inflammatory drugs (NSAIDs) have shown significant efficacy in human clinical trials. To explore the possibility that concurrent blockade of free radicals and PGE2-mediated inflammation might constitute a safe and effective therapeutic approach to certain neurodegenerative diseases, we have developed 2-hydroxy-5-[2-(4-trifluoromethylphenyl)-ethylaminobezoic acid (AAD-2004) as a derivative of aspirin. AAD-2004 completely removed free radicals at 50 nM as a potent spin trapping molecule and inhibited microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 230 nM. Oral administration of AAD-2004 blocked free radical formation, PGE2 formation, and microglial activation in the spinal motor neurons of SOD1G93A mice. As a consequence, AAD-2004 reduced autophagosome formation, axonopathy, and motor neuron degeneration, improving motor function and increasing life span. In these assays, AAD-2004 was superior to ibuprofen or riluzole. Gastric bleeding was not induced by AAD-2004 even at a dose 400-fold higher than that required to obtain maximal therapeutic efficacy in SOD1G93A mice. Targeting both mPGES-1 and free radicals may be a promising approach to reduce neurodegeneration in ALS and possibly other neurodegenerative diseases
The Role of Echocardiography in Evaluating Cardiovascular Diseases in Patients with Diabetes Mellitus
Patients with diabetes mellitus are highly susceptible to cardiovascular complications, which are directly correlated with cardiovascular morbidity and mortality. In addition to coronary artery disease, there is growing awareness of the risk and prevalence of heart failure (HF) in patients with diabetes. Echocardiography is an essential diagnostic modality commonly performed in patients with symptoms suggestive of cardiovascular diseases (CVD), such as dyspnea or chest pain, to establish or rule out the cause of symptoms. Conventional echocardiographic parameters, such as left ventricular ejection fraction, are helpful not only for diagnosing CVD but also for determining severity, treatment strategy, prognosis, and response to treatment. Echocardiographic myocardial strain, a novel echocardiographic technique, enables the detection of early changes in ventricular dysfunction before HF symptoms develop. This article aims to review the role of echocardiography in evaluating CVD in patients with diabetes mellitus and how to use it in patients with suspected cardiac diseases
- …