774 research outputs found

    Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers

    Get PDF
    We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated

    Rare-earth and transition metal ion single-/co-doped double-perovskite tantalate phosphors: Validation of suitability for versatile applications

    Get PDF
    Novel rare-earth (RE; e.g., europium (Eu3+), samarium (Sm3+), and praseodymium (Pr3+)) and transition metal (TM4+; e.g., manganese (Mn4+)) ion single-/co-doped double-perovskite Ca2InTaO6 (CITO) phosphors were prepared and investigated with respect to their crystal structure and photoluminescence (PL) properties. Among them, the CITO:Eu3+ phosphors were found to exhibit an ultra-high internal PL quantum yield (89.1%) and good thermal stability (78.7% at 423 K relative to the initial value at 303 K). As such, the corresponding packaged white light-emitting diode (LED) was able to display a remarkable color rendering index (CRI; = 91.51@10 mA). Besides, the potential in applications of anti-counterfeiting fields and a novel LED structure based on flexible phosphor-converted films was also studied. Moreover, due to their different thermal quenching, trivalent lanthanide (Ln3+)/Mn4+ co-doped CITO phosphors were designed for optical thermometry based on the luminescence intensity ratio (LIR) between different 4f transitions of various Ln3+ ions and 2Eg → 4A2g (Mn4+) transition. Particularly, the LIR between the 4G5/2 → 6H9/2 and 2Eg → 4A2g peaks of the CITO activated with 5 mol% Sm3+ and 0.3 mol% Mn4+ exhibited the most excellent relative sensitivity (Sr; = 3.80 %·K−1) with beneficial temperature uncertainty of 0.0648 K. Overall, these results are of significance to offer valuable databases for constructing multifunctional high-performance optical platforms using single-/co-doped double-perovskite tantalates

    Thermal efficiency evaluation of silica fume/phase change material composite for application to concrete

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.Silica fume has been used as a replacement for cement, due to its high early compressive strength, high tensile and flexural strength, high bond strength, and enhanced durability of concrete. In this study, enhanced thermal performances of silica fume by incorporating organic PCMs were examined, for applying to concrete. Three kinds of organic PCMs were incorporated into the silica fume. The silica fume/PCM composites were prepared by the vacuum impregnation method. Because the silica fume has a high porous structure compared to the cement, it is useful to incorporate the PCM, to enhance its thermal storage performance. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysisdc201

    Cross-genotype protection of live-attenuated vaccine candidate for severe fever with thrombocytopenia syndrome virus in a ferret model

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus classified within the Banyangvirus genus. SFTS disease has been reported throughout East Asia since 2009 and is characterized by high fever, thrombocytopenia, and leukopenia and has a 12 to 30% case fatality rate. Due to the recent emergence of SFTSV, there has been little time to conduct research into preventative measures aimed at combatting the virus. SFTSV is listed as one of the World Health Organization’s Prioritized Pathogens for research into antiviral therapeutics and vaccine development. Here, we report 2 attenuated recombinant SFTS viruses that induce a humoral immune response in immunized ferrets and confer complete cross-genotype protection to lethal challenge. Animals infected with rHB29NSsP102A or rHB2912aaNSs (both genotype D) had a reduced viral load in both serum and tissues and presented without high fever, thrombocytopenia, or mortality associated with infection. rHB29NSsP102A- or rHB2912aaNSs-immunized animals developed a robust anti-SFTSV immune response against cross-genotype isolates of SFTSV. This immune response was capable of neutralizing live virus in a focus-reduction neutralization test (FRNT) and was 100% protective against a cross-genotype lethal challenge with the CB1/2014 strain of SFTSV (genotype B). Thus, using our midsized, aged ferret infection model, we demonstrate 2 live attenuated vaccine candidates against the emerging pathogen SFTSV
    corecore