553 research outputs found

    A novel design of 3D-bioprocess for embryonic stem cell expansion and differentiation: in vitro skeletal lineage tissue generation

    No full text
    Embryonic stem cells (ESCs) are known for their ability to be maintained almost indefinitely in an undifferentiated, proliferating state with the potential to give rise to all the cell types. Current strategies for the differentiation of ESCs are limited by their inability to control differentiation resulting in a heterogeneous cell population. Addressing this limitation, it has been previously reported that treatment with HepG2-conditioned medium (HepG2-CM) enhances the formation of multipotent mesodermal progenitors from ESCs. This promotes greater control of ESC differentiation in a lineage-specific fashion possibly resulting in efficient skeletal differentiation, which is an observation demonstrated by our group. In this study, by regulating culture time, preferential differentiation to either the osteogenic or cardiomyogenic lineage from murine ESCs was achieved using HepG2-CM in a three-dimensional integrated bioprocess. In addition, an automatable and scalable bioprocess was developed through the design, fabrication, and testing of a novel perfusion bioreactor system that has improved mineralised cellular construct generation. Finally, an animal pilot study was conducted to evaluate the efficacy and toxicity of our mineralised cellular construct

    2,2-[(E)-3,3-Diphenyl­prop-2-ene-1,1-di­yl]bis­(3-hy­droxy­cyclo­hex-2-en-1-one)

    Get PDF
    In the title compound, C27H26O4, each of the cyclo­hexenone rings adopts a half-chair conformation. The dihedral angle between the two phenyl rings is 89.53 (5)°. The hy­droxy and carbonyl O atoms face each other and are orientated to allow the formation of two intra­molecular O—H⋯O hydrogen bonds, which are typical of xanthene derivatives

    Bioreactor systems are essentially required for stem cell bioprocessing

    Get PDF
    As stem cell technologies have rapidly advanced, the stem cell therapy market has been forecast to reach hundreds of millions of USD in market value within the next 5 years. Regulatory frameworks throughout the stem cell market have been concurrently established, which will encourage the advent of a variety of stem cell products in our society. Given the circumstances, stem cell bioprocessing has emerged as one of the most critical fields of research to address a number of issues that currently exist in manufacturing clinical-grade stem cells at an industrial scale. Highly specialized bioreactor designs are at the center of essentially required technologies in the field of stem cell bioprocessing, which ultimately aim for automated, standardized, traceable, cost-effective, safe, and regulatory-compliant manufacture of stem cell-based products. In this review, recently developed bioreactor designs to introduce important regulatory factors to three-dimensional stem cell culture are exemplified, and prerequisites for the ideal bioreactor systems for stem cell bioprocessing are discussed

    (E)-2,2′-[3-(2-Nitro­phen­yl)prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-dimethyl­cyclo­hex-2-en-1-one)

    Get PDF
    In the title compound, C25H29NO6, each of the cyclo­hexenone rings adopts a half-chair conformation. Each of the pairs of hy­droxy and carbonyl O atoms are oriented to allow for the formation of intra­molecular O—H⋯O hydrogen bonds, which are typical of xanthene derivatives. The nitro group is rotationally disordered over two orientations in a 0.544 (6):0.456 (6) ratio. In the crystal, weak inter­molecualr C—H⋯O hydrogen bonds link mol­ecules into layers parallel to the ab plane

    Comparison of environmental characteristics at Cicuta virosa habitats, an endangered species in South Korea

    Get PDF
    Cicuta virosa is an endangered species in Korea, which is a southern marginal area. To conserve and restore habitats of this plant, we investigated water and soil environmental characteristics and vegetation at four habitats during the growing season. The C. virosa habitats differed in community structure, water and substrate properties, and water regime. Although the total distribution ranges of the water and soil environments for C. virosa were wide and overlapped with the optimal environmental range of distribution of accompanying species, the optimal water level range for C. virosa was defined as 7 ± 3.5 cm. Water level was adjusted by substrate structure such as a mound of P. japonica and a floating mat comprised of accompanying species. A floating mat was an aid to maintain an optimal and stable water level in deep or fluctuating water and to prevent strong competition with prolific macrophytes. The GS sampling site, which had floating mats, could be a good model for C. virosa conservation in a warm temperate region, whereas the PC sampling sites, which experienced a water shortage in spring, provided a clue about the decline in C. virosa population size.This study was supported by Korea Ministry of Environment as The Eco-Innovation project 416-111-010.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000026049/5SEQ:5PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000026049ADJUST_YN:NEMP_ID:A075900DEPT_CD:719CITE_RATE:0FILENAME:2013JEcoEnv36(1).pdfDEPT_NM:생물교육과EMAIL:[email protected]:

    Plasmodium sporozoite phospholipid scramblase interacts with mammalian carbamoyl-phosphate synthetase 1 to infect hepatocytes

    Get PDF
    After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate. © 2021, The Author(s).1
    corecore