3 research outputs found

    Quality of life in patients with diabetic nephropathy: findings from the KNOW-CKD (Korean Cohort Study for Outcomes in Patients with Chronic Kidney Disease) cohort

    Get PDF
    Background Diabetic nephropathy (DN) can affect quality of life (QoL) because it requires arduous lifelong management. This study analyzed QoL differences between DN patients and patients with other chronic kidney diseases (CKDs). Methods The analysis included subjects (n = 1,766) from the KNOW-CKD (Korean Cohort Study for Outcomes in Patients with Chronic Kidney Disease) cohort who completed the Kidney Disease Quality of Life Short Form questionnaire. After implementing propensity score matching (PSM) using factors that affect the QoL of DN patients, QoL differences between DN and non-DN participants were examined. Results Among all DN patients (n = 390), higher QoL scores were found for taller subjects, and lower scores were found for those who were unemployed or unmarried, received Medical Aid, had lower economic status, had higher platelet counts or alkaline phosphatase levels, or used clopidogrel or insulin. After PSM, the 239 matched DN subjects reported significantly lower patient satisfaction (59.9 vs. 64.5, p = 0.02) and general health (35.3 vs. 39.1, p = 0.04) than the 239 non-DN subjects. Scores decreased in both groups during the 5-year follow-up, and the scores in the work status, sexual function, and role-physical domains were lower among DN patients than non-DN patients, though those differences were not statistically significant. Conclusion Socioeconomic factors of DN were strong risk factors for impaired QoL, as were high platelet, alkaline phosphatase, and clopidogrel and insulin use. Clinicians should keep in mind that the QoL of DN patients might decrease in some domains compared with non-DN CKDs

    Control Method of Step Voltage Regulator on Distribution Lines with Distributed Generation

    No full text
    Generally, utilities regulate the voltage on the long power distribution line within a permissible range by using a step voltage regulator (SVR), which is located around the middle of the line and operates according to the condition of the line current. However, as large-scale distributed generations (DG’s) are interconnected into distribution lines, it is difficult to maintain the line voltage properly owing to bi-directional power flow or reverse power flow. Therefore, this paper proposes a novel SVR tap-changing algorithm to solve the problem, considering line load conditions and reverse power flow. Its validity is verified through the PSCAD/EMTDC software tool and simulations

    Control Method of Step Voltage Regulator on Distribution Lines with Distributed Generation

    No full text
    Generally, utilities regulate the voltage on the long power distribution line within a permissible range by using a step voltage regulator (SVR), which is located around the middle of the line and operates according to the condition of the line current. However, as large-scale distributed generations (DG’s) are interconnected into distribution lines, it is difficult to maintain the line voltage properly owing to bi-directional power flow or reverse power flow. Therefore, this paper proposes a novel SVR tap-changing algorithm to solve the problem, considering line load conditions and reverse power flow. Its validity is verified through the PSCAD/EMTDC software tool and simulations
    corecore