35 research outputs found

    Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Get PDF
    AbstractEmbryonic stem cell-derived cardiomyocytes (ESC-CMs) hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes

    Stretch-activated non-selective cation channel: a causal link between mechanical stretch and atrial natriuretic peptide secretion

    No full text
    The polypeptide hormone atrial natriuretic peptide (ANP) plays vital roles in maintaining blood volume and arterial blood pressure. The recognition of clinical benefits of ANP both in healthy and diseased heart identifies ANP as a potential candidate for therapeutic strategy in the treatment of heart disease. ANP is synthesized and stored in cardiac myocytes and it is released through the exocytosis of ANP granules both constitutively and in response to stimuli. It is well known that mechanical stretch is the predominant stimulus for ANP secretion. However, the mechanistic link between mechanical stimuli and exocytosis of ANP vesicles in single atrial myocyte has not yet been demonstrated. Over the last decade, compelling evidence suggested that stretch-activated ion channels might function as mechanosensors. We showed previously that direct stretch of single atrial myocyte using two micro-electrodes activated a non-selective cation channel (SAC). So far it is not known whether activation of SAC is involved in stretch-induced ANP secretion. The present article aims to give an overview of the mechanism of mechanical stretch-stimulated ANP secretion and describes an innovative technique to detect ANP secretion from isolated rat atrial myocytes with high time-resolution. Combined with capacitance measurement and patch-clamp technique in conjunction with in situ ANP bioassay, we were able to demonstrate that SAC in rat atrial myocytes acts as a mechanosensor to transduce stretch signals into the ANP secretion pathway.This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005- 003-E00014) and project grant from Garfield Western Trust to Y.H.Z. Y.H.Z. is funded by the British Heart Foundation

    Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Calpha

    No full text
    We investigated the effects of the vasoconstrictor angiotensin (Ang) II on the whole cell inward rectifier K(+) (Kir) current enzymatically isolated from small-diameter (<100 microm) coronary arterial smooth muscle cells (CASMCs). Ang II inhibited the Kir current in a dose-dependent manner (half inhibition value: 154 nM). Pretreatment with phospholipase C inhibitor and protein kinase C (PKC) inhibitors prevented the Ang II-induced inhibition of the Kir current. The PKC activator reduced the Kir currents. The inhibitory effect of Ang II was reduced by intracellular and extracellular Ca(2+) free condition and by Go6976, which inhibits Ca(2+)-dependent PKC isoforms alpha and beta. However, the inhibitory effect of Ang II was unaffected by a peptide that selectively inhibits the translocation of the epsilon isoform of PKC. Western blot analysis confirmed that PKCalpha, and not PKCbeta, was expressed in small-diameter CASMCs. The Ang II type 1 (AT(1))-receptor antagonist CV-11974 prevented the Ang II-induced inhibition of the Kir current. From these results, we conclude that Ang II inhibits Kir channels through AT(1) receptors by the activation of PKCalpha

    Electrophysiological modelling of pulmonary artery smooth muscle cells in the rabbits--special consideration to the generation of hypoxic pulmonary vasoconstriction

    No full text
    In vascular smooth muscle cells, it has been suggested that membrane potential is an important component that initiates contraction. We developed a mathematical model to elucidate the quantitative contributions of major ion currents [a voltage-gated L-type Ca2+ current (ICaL), a voltage-sensitive K+ current (IKV), a Ca2+-activated K+ current (IKCa) and a nonselective cation current (INSC)] to membrane potential. In order to typify the diverse nature of pulmonary artery smooth muscle cells (PASMCs), we introduced parameters that are not fixed (variable parameters). The population of cells with different parameters was constructed and the cells that have the electrophysiological properties of PASMCs were selected. The contributions of each membrane current were investigated by sensitivity analysis and modification of the current parameters. Consequently, IKV and INSC were found to be the most important currents that affect the membrane potential. The occurrence of depolarisation in hypoxic pulmonary vasoconstriction (HPV) was also examined. In hypoxia, IKV and IKCa were reduced, but the consequent depolarisation in simulation was not enough to initiate contractions. If we add an increase of INSC (2.5-fold), the calculated membrane potential was enough to induce contraction. From the results, we conclude that the balance of various ion channel activities determines the resting membrane potential of PASMCs and our model was successful in explaining the depolarisation in HPV. Therefore, this model can be a powerful tool to investigate the various electrical properties of PASMCs in both normal and pathological conditions

    A mathematical model of pacemaker activity recorded from mouse small intestine

    No full text
    The pacemaker activity of interstitial cells of Cajal (ICCs) has been known to initiate the propagation of slow waves along the whole gastrointestinal tract through spontaneous and repetitive generation of action potentials. We studied the mechanism of the pacemaker activity of ICCs in the mouse small intestine and tested it using a mathematical model. The model includes ion channels, exchanger, pumps and intracellular machinery for Ca2+ regulation. The model also incorporates inositol 1,4,5-triphosphate (IP3) production and IP3-mediated Ca2+ release activities. Most of the parameters were obtained from the literature and were modified to fit the experimental results of ICCs from mouse small intestine. We were then able to compose a mathematical model that simulates the pacemaker activity of ICCs. The model generates pacemaker potentials regularly and repetitively as long as the simulation continues. The frequency was set at 20 min(-1) and the duration at 50% repolarization was 639 ms. The resting and overshoot potentials were -78 and +1.2 mV, respectively. The reconstructed pacemaker potentials closely matched those obtained from animal experiments. The model supports the idea that cyclic changes in [Ca2+]i and [IP3] play key roles in the generation of ICC pacemaker activity in the mouse small intestine

    Block of HERG Human K+ Channel and IKr of Guinea Pig Cardiomyocytes by Chlorpromazine

    No full text
    Chlorpromazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of chlorpromazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on delayed rectifier K+ current of guinea pig ventricular myocytes. Application of chlorpromazine showed a dose-dependent decrease in the amplitudes of steady-state currents and tail currents of HERG. The decrease became more pronounced at increasingly positive potential, suggesting that the blockade of HERG by chlorpromazine is voltage dependent. IC50 for chlorpromazine block of HERG current was progressively decreased according to depolarization: IC50 values at -30, 0, and +30 mV were 10.5, 8.8, and 4.9 ฮผM, respectively. The block of HERG current during the voltage step increased with time starting from a level 89% of the control current. In guinea pig ventricular myocytes, bath application of 2 and 5 ฮผM chlorpromazine at 36ยฐC blocked rapidly activating delayed rectifier K+ current (IKr) by 31 and 83%, respectively. How-ever, the same concentrations of chlorpromazine failed to significantly block slowly activating delayed rectifier K+ current (IKs). Our findings suggest that the arrhythmogenic side effect of chlorpromazine is caused by blockade of HERG and rapid component of delayed rectifier K+ current rather than by blockade of the slow component.This work was supported by grants from the Basic Research Program of the Korea Science & Engineering Foundation (R04-2003-000-10007-0) and from the Cheju National University Medical Research Fund (2003)
    corecore