60 research outputs found

    Truncal Contrapulsion in Pretectal Syndrome

    Get PDF
    Truncal contrapulsion in association with pretectal syndrome has not been described previously. We report a patient with vertical-gaze palsy and severe truncal contrapulsion due to an infarction in the mesodiencephalic junction. Truncal contrapulsion in this patient may have resulted from the disruption of the ascending fibers in the crossed cerebellothalamic tract

    Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters

    Get PDF
    Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic

    Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens

    Get PDF
    Environmental cues regulate the transition of many plants from vegetative to flowering development. Day length, or photoperiod, is one cue that synchronizes flowering by changing seasons. Consequently, the molecular mechanism of flowering control is prominent in Arabidopsis and rice, where essential genes like FLOWERING LOCUS T (FT) homolog, HEADING DATE 3a (Hd3a), have been connected to flowering regulation. Perilla is a nutrient-rich leaf vegetable, and the flowering mechanism remains largely elusive. We identified flowering-related genes under short-day conditions using RNA sequencing to develop an enhanced leaf production trait using the flowering mechanism in the perilla. Initially, an Hd3a-like gene was cloned from the perilla and defined as PfHd3a. Furthermore, PfHd3a is highly rhythmically expressed in mature leaves under short-day and long-day conditions. Ectopic expression of PfHd3a in Atft-1 mutant plants has been shown to complement Arabidopsis FT function, resulting in early flowering. In addition, our genetic approaches revealed that overexpression of PfHd3a in perilla caused early flowering. In contrast, the CRISPR/Cas9 generated PfHd3a-mutant perilla showed significantly late flowering, resulting in approximately 50% leaf production enhancement compared to the control. Our results suggest that PfHd3a plays a vital role in regulating flowering in the perilla and is a potential target for molecular breeding in the perilla

    Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants

    No full text
    Strigolactone (SL) is a recently discovered class of phytohormone that inhibits shoot branching. The molecular mechanism underlying SL biosynthesis, perception, and signal transduction is vital to the plant branching phenotype. Some aspects of their biosynthesis, perception, and signaling include the role of four MORE AXILLARY GROWTH genes, MAX3, MAX4, MAX1, and MAX2. It is important to identify downstream genes that are involved in SL signaling. To achieve this, we studied the genomic aspects of the strigolactone biosynthesis pathway using microarray analysis of four max mutants. We identified SL signaling candidate genes that showed differential expression patterns in max mutants. More specifically, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 4 (ACC4) and PROTEIN KINASE 3 (PKS3) displayed contrasting expression patterns, indicating a regulatory mechanism in SL signaling pathway to control different phenotypes apart from branching phenotype

    Effects of Air Purifiers on the Spread of Simulated Respiratory Droplet Nuclei and Virus Aggregates

    No full text
    The present study was performed to quantitatively evaluate the effects of air purifiers on the spread of COVID-19 and to suggest guidelines for their safe use. To simulate respiratory droplet nuclei and nano-sized virus aggregates, deionized water containing 100 nm of polystyrene latex (PSL) particles was sprayed using a vibrating mesh nebulizer, and the changes in the particle number concentration were measured for various locations of the particle source and air purifier in a standard 30 m3 test chamber. The spread of the simulated respiratory droplet nuclei by the air purifier was not significant, but the nano-sized aggregates were significantly affected by the airflow generated by the air purifier. However, due to the removal of the airborne particles by the HEPA filter contained in the air purifier, continuous operation of the air purifier reduced the number concentration of both the simulated respiratory droplet nuclei and nano-sized aggregates in comparison to the experiment without operation of the air purifier. The effect of the airflow generated by the air purifier on the spread of simulated respiratory droplet nuclei and nano-sized aggregates was negligible when the distance between the air purifier and the nebulizer exceeded 1 m

    Development of an Electrostatic Beat Module for Various Tactile Sensations in Touch Screen Devices

    No full text
    One of the most dominant factors in developing tactile modules is the ability to generate abundant vibrotactile sensation. This paper presents a new vibrotactile module which can stimulate two mechanoreceptors at the same time without any mechanical vibration motors. To realize that, we first design an electro-tactile beat module (an ETB module) consisting of a lower part, a connection part and an upper part. The two electrodes were designed in an interdigitated pattern and were applied to the upper part. By applying two voltage inputs with slightly different frequencies to two electrodes in the proposed ETB module, respectively, we can create beat-patterned vibration. Furthermore, we can create normal vibration with the proposed ETB module by applying same frequency to the two electrodes. Experiments were conducted to validate the haptic performance of the proposed prototype. The results show that the proposed ETB module can create not only beat-patterned vibration but also normal vibration. The results also show that it can generate strong enough vibration to stimulate mechanoreceptors in wide frequency ranges

    The Effectiveness of Compartmentalized Bone Graft Sponges Made Using Complementary Bone Graft Materials and Succinylated Chitosan Hydrogels

    No full text
    Bone defects can occur from many causes, including disease or trauma. Bone graft materials (BGMs) have been used to fill damaged areas for the reconstruction of diseased bone tissues since they are cost effective and readily available. However, BGMs quickly disperse around the tissue area, which ultimately leads to it migrating away from the defect after transplantation. We tested chitosan hydrogels as a useful carrier to hold BGMs in the transplantation area. In this study, we synthesized succinylated chitosan (SCS)-based hydrogels with a high decomposition rate and excellent biocompatibility. We confirmed that BGMs were well distributed inside the SCS hydrogel. The SCS-B hydrogel showed a decrease in mechanical properties, such as compressive strength and Young’s modulus, as the succinylation rate increased. SCS-B hydrogels also exhibited a high cell growth rate and bone differentiation rate. Moreover, the in vivo results showed that the SCS hydrogel resorbed into the surrounding tissues while maintaining the BGMs in the transplantation area for up to 6 weeks. These data support the idea that SCS hydrogel can be useful as a bioactive drug carrier for a broad range of biomedical applications
    • …
    corecore