64 research outputs found

    Ganjam virus

    Get PDF
    Ganjam virus (GANV), a member of genus Nairovirus of family Bunyavirdae is of considerable veterinary importance in India. Though, predominantly tick borne, GANV was also isolated from mosquitoes, man and sheep. Neutralizing and complement fixing antibodies to GANV have been detected in animal and human sera collected from different parts of the country. Thirty three strains of GANV have been isolated from India, mainly from Haemaphysalis ticks. The virus replicated in certain vertebrate and mosquito cell lines and found pathogenic to laboratory animals. One natural infection and five laboratoryacquired infections in men were also reported. GANV is antigenically related to Nairobi sheep disease virus (NSDV) of Africa, which is highly pathogenic for sheep and goats causing 70-90 per cent mortality among the susceptible population. Recent molecular studies have demonstrated that GANV is an Asian variant of NSDV and both these viruses are related to the dreaded Crimean Congo haemorrhagic fever (CCHF) group viruses. The versatility of the virus to replicate in different arthropod species, its ability to infect sheep, goat and man makes it an important zoonotic agent

    Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs

    Get PDF
    Background & objectives: Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Methods: Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID50) and indirect immunofluorescence assay (IFA). Results: All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Interpretation & conclusions: Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics

    Isolation of Dengue Virus-Specific Memory B Cells with Live Virus Antigen from Human Subjects following Natural Infection Reveals the Presence of Diverse Novel Functional Groups of Antibody Clones

    Get PDF
    Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Seroepidemiology of dengue, zika, and yellow fever viruses among children in the democratic republic of the Congo

    Get PDF
    Flaviviruses suchas Zika, dengue, and yellow fever cause epidemics throughout the tropics and account for substantial global morbidity and mortality. Although malaria and other vector-borne diseases have long been appreciated in Africa, flavivirus epidemiology is incompletely understood. Despite the existence of an effective vaccine, yellow fever continues to cause outbreaks and deaths, including atleast 42 fatalities inthe Democratic Republic of the Congo (DRC) in 2016. Here, we leveraged biospecimens collected as part of the nationally representative 2013-2014 Demographic and Health Survey in the DRC to examine serological evidence of flavivirus infection or vaccination in children aged 6 monthsto 5 years. Even in this young stratum of the Congolese population, wefind evidence of infection by dengue and Zika viruses basedonresults from enzyme-linked immunosorbent assay and neutralization assay. Surprisingly, there was remarkable discordance between reported yellow fever vaccination status and results of serological assays. The estimated serop revalences of neutralizing antibodies against each virus are yellow fever, 6.0% (95%confidence interval [CI]= 4.6-7.5%); dengue, 0.4% (0.1-0.9%); and Zika, 0.1% (0.0-0.5%). These results merit targeted, prospective studies to assess effectiveness of yellow fever vaccination programs, determine flavivirus seroprevalence across a broader age range, and investigate how these emerging diseases contribute to the burden of acute febrile illness in the DRC

    Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4+ T cell responses

    Get PDF
    Background: Dengue Virus (DENV) associated disease is a major public health problem. Assessment of HLA class II restricted DENV-specific responses is relevant for immunopathology and definition of correlates of protection. While previous studies characterized responses restricted by the HLA-DRB1 locus, the responses associated with other class II loci have not been characterized to date. Accordingly, we mapped HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4 T cell epitopes in PBMCs derived from the DENV endemic region Sri Lanka. Methods: We studied 12 DP, DQ, and DRB3/4/5 alleles that are commonly expressed and provide worldwide coverage >82% for each of the loci analyzed and >99% when combined. CD4+ T cells purified by negative selection were stimulated with pools of HLA-predicted binders for 2 weeks with autologous APC. Epitope reactive T cells were enumerated using IFNγ ELISPOT assay. This strategy was previously applied to identify DRB1 restricted epitopes. In parallel, membrane expression levels of HLA-DR, DP, and DQ proteins was assessed using flow cytometry. Results: Epitopes were identified for all DP, DQ, and DRB3/4/5 allelic variants albeit with magnitudes significantly lower than the ones previously observed for the DRB1 locus. This was in line with lower membrane expression of HLA-DP and DQ molecules on the PBMCs tested, as compared to HLA-DR. Significant differences between loci were observed in antigen immunodominance. Capsid responses were dominant for DRB1/3/4/5 and DP alleles but negligible for the DQ alleles. NS3 responses were dominant in the case of DRB1/3/4/5 and DQ but absent in the case of DP. NS1 responses were prominent in the case of the DP alleles, but negligible in the case of DR and DQ. In terms of epitope specificity, repertoire was largely overlapping between DRB1 and DRB3/4/5, while DP and DQ loci recognized largely distinct epitope sets. Conclusion: The HLA-DP, DQ, and DRB3/4/5 loci mediate DENV-CD4 specific immune responses of lower magnitude as compared to HLA-DRB1, consistent with their lower levels of expression. The responses are associated with distinct and characteristic patterns of immunodominance, and variable epitope overlap across loci

    Neurological and neuropsychological sequelae of Zika virus infection in children in León, Nicaragua

    Get PDF
    Objectives. To describe the presence and persistence of neurological and neuropsychological sequelae among children with acquired Zika virus infection and assess whether those sequelae were more common in children infected with Zika virus compared to uninfected children. Methods. We conducted a prospective cohort study of children with and without Zika virus infection in León, Nicaragua, using a standard clinical assessment tool and questionnaire to collect data on symptoms at three visits, about 6 months apart, and a battery of standardized instruments to evaluate neurocognitive function, behavior, depression, and anxiety at the last two visits. Results. Sixty-two children were enrolled, with no significant differences in demographics by infection group. Children infected with Zika virus had a range of neurological symptoms, some of which persisted for 6 to 12 months; however, no consistent pattern of symptoms was observed. At baseline a small percentage of children infected with Zika virus had an abnormal finger-to-nose test (13%), cold touch response (13%), and vibration response (15%) versus 0% in the uninfected group. Neurocognitive deficits and behavioral problems were common in both groups, with no significant differences between the groups. Children infected with Zika virus had lower cognitive efficiency scores at the 6-month visit. Anxiety and depression were infrequent in both groups. Conclusions. Larger studies are needed to definitively investigate the relationship between Zika virus infection and neurological symptoms and neurocognitive problems, with adjustment for factors affecting cognition and behavior, including mood and sleep disorders, home learning environment, history of neuroinvasive infections, and detailed family history of neuropsychological problems

    Longitudinal analysis of antibody cross-neutralization following zika virus and dengue virus infection in Asia and the Americas

    Get PDF
    Background The 4 dengue virus serotypes (DENV1-4) and Zika virus (ZIKV) are related mosquito-borne flaviviruses of major importance globally. While monoclonal antibodies and plasma from DENV-immune donors can neutralize or enhance ZIKV in vitro and in small-animal models, and vice versa, the extent, duration, and significance of cross-reactivity in humans remains unknown, particularly in flavivirus-endemic regions. Methods We studied neutralizing antibodies to ZIKV and DENV1-4 in longitudinal serologic specimens collected through 3 years after infection from people in Latin America and Asia with laboratory-confirmed DENV infections. We also evaluated neutralizing antibodies to ZIKV and DENV1-4 in patients with Zika through 6 months after infection. Results In patients with Zika, the highest neutralizing antibody titers were to ZIKV, with low-level cross-reactivity to DENV1-4 that was greater in DENV-immune individuals. We found that, in primary and secondary DENV infections, neutralizing antibody titers to ZIKV were markedly lower than to the infecting DENV and heterologous DENV serotypes. Cross-neutralization was greatest in early convalescence, then ZIKV neutralization decreased, remaining at low levels over time. Conclusions Patterns of antibody cross-neutralization suggest that ZIKV lies outside the DENV serocomplex. Neutralizing antibody titers can distinguish ZIKV from DENV infections when all viruses are analyzed simultaneously. These findings have implications for understanding natural immunity and vaccines

    Case based measles surveillance in Pune: Evidence to guide current and future measles control and elimination efforts in India

    Get PDF
    Background: According to WHO estimates, 35% of global measles deaths in 2011 occurred in India. In 2013, India committed to a goal of measles elimination by 2020. Laboratory supported case based measles surveillance is an essential component of measles elimination strategies. Results from a case-based measles surveillance system in Pune district (November 2009 through December 2011) are reported here with wider implications for measles elimination efforts in India.Methods: Standard protocols were followed for case identification, investigation and classification. Suspected measles cases were confirmed through serology (IgM) or epidemiological linkage or clinical presentation. Data regarding age, sex, vaccination status were collected and annualized incidence rates for measles and rubella cases calculated.Results: Of the 1011 suspected measles cases reported to the surveillance system, 76% were confirmed measles, 6% were confirmed rubella, and 17% were non-measles, non-rubella cases. Of the confirmed measles cases, 95% were less than 15 years of age. Annual measles incidence rate was more than 250 per million persons and nearly half were associated with outbreaks. Thirty-nine per cent of the confirmed measles cases were vaccinated with one dose of measles vaccine (MCV1).Conclusion: Surveillance demonstrated high measles incidence and frequent outbreaks in Pune where MCV1 coverage in infants was above 90%. Results indicate that even high coverage with a single dose of measles vaccine was insufficient to provide population protection and prevent measles outbreaks. An effective measles and rubella surveillance system provides essential information to plan, implement and evaluate measles immunization strategies and monitor progress towards measles elimination

    Development of envelope protein antigens to serologically differentiate zika virus infection from dengue virus infection

    Get PDF
    Zika virus (ZIKV) is an emerging flavivirus that can cause birth defects and neurologic complications. Molecular tests are effective for diagnosing acute ZIKV infection, although the majority of infections produce no symptoms at all or present after the narrow window in which molecular diagnostics are dependable. Serology is a reliable method for detecting infections after the viremic period; however, most serological assays have limited specificity due to cross-reactive antibodies elicited by flavivirus infections. Since ZIKV and dengue virus (DENV) widely cocirculate, distinguishing ZIKV infection from DENV infection is particularly important for diagnosing individual cases or for surveillance to coordinate public health responses. Flaviviruses also elicit type-specific antibodies directed to non-cross-reactive epitopes of the infecting virus; such epitopes are attractive targets for the design of antigens for development of serological tests with greater specificity. Guided by comparative epitope modeling of the ZIKV envelope protein, we designed two recombinant antigens displaying unique antigenic regions on domain I (Z-EDI) and domain III (Z-EDIII) of the ZIKV envelope protein. Both the Z-EDI and Z-EDIII antigens consistently detected ZIKV-specific IgG in ZIKV-immune sera but not cross-reactive IgG in DENV-immune sera in late convalescence (12 weeks postinfection). In contrast, during early convalescence (2 to 12 weeks postinfection), secondary DENV-immune sera and some primary DENV-immune sera cross-reacted with the Z-EDI and Z-EDIII antigens. Analysis of sequential samples from DENV-immune individuals demonstrated that Z-EDIII cross-reactivity peaked in early convalescence and declined steeply over time. The Z-EDIII antigen has much potential as a diagnostic antigen for population-level surveillance and for detecting past infections in patients
    • …
    corecore