21 research outputs found

    Repurposing Fumaric Acid Esters to Treat Conditions of Oxidative Stress and Inflammation: A Promising Emerging Approach with Broad Potential

    Get PDF
    The medicinal benefit of salts of fumaric acid and its esters (FAE), known as fumarates (mono and dimethyl fumarate), was realized many years ago. Early on, FAE were derived from plants and mushrooms (e.g., Fumaria officinalis, Boletus fomentarius var. pseudo-igniarius). The FAE containing formulation Fumaderm® was licensed in Germany for the treatment of psoriasis in 1994. Recently, a clinical formulation of dimethyl fumarate known as BG12 (Tecfidera) was approved for use in the United States, New Zealand, Australia, European Union, Switzerland, and Canada for the treatment of multiple sclerosis. Others and we have assessed the potential benefit of FAE in a number of disease conditions that are diverse with respect to etiology but unified with regard to the involvement of inflammation and oxidative stress. Hence, a FAE-based drug with robust anti-oxidative and anti-inflammatory effects that is already US-FDA approved is a perfect contender for repurposing and rapid clinical implementation for their management. There is a burgeoning literature on the use of FAE in the prevention and treatment of diseases, other than psoriasis and MS, in which oxidative stress and/or inflammation are prominent. This chapter highlights critical information gleaned from these studies, exposes lacunae of potential importance, and provides related perspectives

    Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    Get PDF
    Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans

    Oxidative Stress and Inflammation in Retinal Degeneration

    No full text
    Inflammation and oxidative stress play prominent roles in the pathogenesis of many degenerative diseases of the retina, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal vein occlusion, and retinitis pigmentosa [...

    A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy

    No full text
    Hepatic encephalopathy (HE) is a common neurological consequence in patients with cirrhosis and has a healthcare burden of USD 5370 to 50,120 per patient annually. HE significantly hampers the quality of life and is a major cause of morbidity and mortality. Patients with cirrhosis are at a high risk for protein-calorie malnutrition due to altered metabolism. Current evidence has changed the old belief of protein restriction in patients with cirrhosis and now 1.2 to 1.5 g/kg/day protein intake is recommended. Case series and studies with small numbers of participants showed that a vegetarian protein diet decreases the symptoms of HE when compared to a meat-based diet, but the evidence is limited and requires further larger randomized controlled trials. However, vegetable or milk-based protein diets are good substitutes for patients averse to meat intake. Branch chain amino acids (BCAA) (leucine, isoleucine and valine) have also been shown to be effective in alleviating symptoms of HE and are recommended as an alternative therapy in patients with cirrhosis for the treatment of HE. In this review, we provide an overview of current literature evaluating the role of protein intake in the management of HE in cirrhosis

    Data regarding M1 muscarinic receptor-mediated modulation of hepatic catalase activity in response to oxidative stress

    Get PDF
    AbstractWe recently demonstrated the role of M1 muscarinic receptors (M1R) in modulating oxidative stress in liver and hepatocytes (Urrunaga et al., 2015) [1]. Here we provide data regarding the effect of a novel M1R agonist, VU0357017 (Lebois et al., 2010) [2], on H2O2-mediated hepatocyte injury, the effect of an M1R antagonist VU0255035 (Sheffler et al., 2009) [3] on catalase and super oxide dismutase (SOD) activities in H2O2–treated hepatocytes in vitro, and finally, the effect of M1R ablation on hepatic catalase activity in acetaminophen (APAP)-treated mice

    Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    No full text
    Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans

    Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration

    No full text
    Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision
    corecore