17 research outputs found

    Recent HIV-1 Infection Contributes to the Viral Diffusion over the French Territory with a Recent Increasing Frequency

    Get PDF
    To analyse the contribution of primary human immunodeficiency virus type 1 (HIV-1) infection (PHI) to the French viral epidemic. sequences included 987 PHI from the French ANRS PRIMO cohort between 1999 and 2010 and were analysed using a population-based phylogenetic approach. Clinical features, risk factors, sexual behaviour and drug resistance for clustered and nonclustered transmission events were ascertained.Viruses from 125 (12.7%) of PHI cosegregated into 56 transmission chains, with increasing frequency during the last years (10.2% before 2006 versus 15.2% of clusters in 2006–2010, p = 0.02). The mean number of patients per cluster was 2.44. Compared to unique PHI, clusters involved more often men, infected through homosexual intercourse, of young age, with a high number of casual sexual partnerships and frequent previous HIV serological tests. Resistant strains were found in 16.0% and 11.1% of clusters and unique PHI, respectively (p = 0.11). Overall, 34% (n = 19) clusters included patients followed in French regions far apart, involving 13 clusters with at least one Parisian patient.PHIs are a significant source of onward transmission, especially in the MSM population. Recently infected people contribute to the spread of the viral epidemic throughout the French territory. Survey of transmitted drug resistance and behavioural characteristics of patients involved into clustered PHI may help to guide prevention and treatment interventions

    A new tagger for hadronically decaying heavy particles at the LHC

    No full text
    A new algorithm for the identification of boosted, hadronically decaying, heavy particles at the LHC is presented. The algorithm is based on the known procedure of jet clustering with variable distance parameter RR and adapts the jet size to its transverse momentum pTp_T. Subjets are found using a mass jump condition. The resulting algorithm - called Heavy Object Tagger with Variable RR (HOTVR) - features little algorithmic complexity and combines jet clustering, subjet finding and rejection of soft clusters in one sequence. While the HOTVR algorithm can be used for the identification of any heavy object decaying hadronically, e.g. W, Z, H, t, or possible new heavy resonances, this paper targets specifically the tagging of boosted top quarks. The studies presented here demonstrate a stable performance of the HOTVR algorithm in a wide range of top quark pTp_T, from low pTp_T, where the decay products can be resolved, to the region of boosted decays at high pTp_T.Comment: 19 pages, 3 figures; updated timing test with new HOTVR version improved for timing performance, updated efficiency comparison curves; this version matches published versio
    corecore