13,108 research outputs found

    Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases

    Full text link
    We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a two-dimensional (2D) Fermi gas with spin-orbit coupling (SOC), as a function of the two-body binding energy and a perpendicular Zeeman field. By including a generic form of the SOC, as a function of Rashba and Dresselhaus terms, we study the evolution between the experimentally relevant equal Rashba-Dresselhaus (ERD) case and the Rashba-only (RO) case. We show that in the ERD case, at fixed non-zero Zeeman field, the BKT transition temperature TBKTT_{BKT} is increased by the effect of SOC for all values of the binding energy. We also find a significant increase in the value of the Clogston limit compared to the case without SOC. Furthermore, we demonstrate that the superfluid density tensor becomes anisotropic (except in the RO case), leading to an anisotropic phase-fluctuation action that describes elliptic vortices and antivortices, which become circular in the RO limit. This deformation constitutes an important experimental signature for superfluidity in a 2D Fermi gas with ERD SOC. Finally, we show that the anisotropic sound velocities exhibit anomalies at low temperatures, in the vicinity of quantum phase transitions between topologically distinct uniform superfluid phases.Comment: 5 pages, 3 figure

    Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas

    Full text link
    We study the effect of spin-orbit coupling on both the zero-temperature and non-zero temperature behavior of a two-dimensional (2D) Fermi gas. We include a generic combination of Rashba and Dresselhaus terms into the system Hamiltonian, which allows us to study both the experimentally relevant equal-Rashba-Dresselhaus (ERD) limit and the Rashba-only (RO) limit. At zero temperature, we derive the phase diagram as a function of the two-body binding energy and Zeeman field. In the ERD case, this phase diagram reveals several topologically distinct uniform superfluid phases, classified according to the nodal structure of the quasiparticle excitation energies. Furthermore, we use a momentum dependent SU(2)-rotation to transform the system into a generalized helicity basis, revealing that spin-orbit coupling induces a triplet pairing component of the order parameter. At non-zero temperature, we study the Berezinskii-Kosterlitz-Thouless (BKT) phase transition by including phase fluctuations of the order parameter up to second order. We show that the superfluid density becomes anisotropic due to the presence of spin-orbit coupling (except in the RO case). This leads both to elliptic vortices and antivortices, and to anisotropic sound velocities. The latter prove to be sensitive to quantum phase transitions between topologically distinct phases. We show further that at a fixed non-zero Zeeman field, the BKT critical temperature is increased by the presence of ERD spin-orbit coupling. Subsequently, we demonstrate that the Clogston limit becomes infinite: TBKTT_{\rm{BKT}} remains non-zero at all finite values of the Zeeman field. We conclude by extending the quantum phase transition lines to non-zero temperature, using the nodal structure of the quasiparticle spectrum, thus connecting the BKT critical temperature with the zero-temperature results.Comment: 17 pages, 7 figure

    Particle Production of Vector Fields: Scale Invariance is Attractive

    Get PDF
    In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statistical anisotropy in the curvature perturbation, which may well be observable in the near future

    Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    Full text link
    Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters may evolve either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.Comment: 17 pages, 15 figures. Matches accepted version in A&

    Optimal scan strategies for future CMB satellite experiments

    Full text link
    The B-mode polarisation power spectrum in the Cosmic Microwave Background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarisation must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarisation experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example we go on to identify a scan strategy suitable for the CMB satellite proposed for the ESA M5 call. considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom
    • …
    corecore