17 research outputs found

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5

    Get PDF
    Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas)

    Identification of a Sudden Cardiac Death Susceptibility Locus at 2q24.2 through Genome-Wide Association in European Ancestry Individuals

    Get PDF
    Sudden cardiac death (SCD) continues to be one of the leading causes of mortality worldwide, with an annual incidence estimated at 250,000–300,000 in the United States and with the vast majority occurring in the setting of coronary disease. We performed a genome-wide association meta-analysis in 1,283 SCD cases and >20,000 control individuals of European ancestry from 5 studies, with follow-up genotyping in up to 3,119 SCD cases and 11,146 controls from 11 European ancestry studies, and identify the BAZ2B locus as associated with SCD (P = 1.8×10−10). The risk allele, while ancestral, has a frequency of ∼1.4%, suggesting strong negative selection and increases risk for SCD by 1.92–fold per allele (95% CI 1.57–2.34). We also tested the role of 49 SNPs previously implicated in modulating electrocardiographic traits (QRS, QT, and RR intervals). Consistent with epidemiological studies showing increased risk of SCD with prolonged QRS/QT intervals, the interval-prolonging alleles are in aggregate associated with increased risk for SCD (P = 0.006)

    Determination of Methyl Isopropyl Hydantoin from Rat Erythrocytes by Gas-chromatography Mass-spectrometry to Determine Methyl Isocyanate Dose Following Inhalation Exposure

    No full text
    Methyl isocyanate (MIC) is an important precursor for industrial synthesis, but it is highly toxic. MIC causes irritation and damage to the eyes, respiratory tract, and skin. While current treatment is limited to supportive care and counteracting symptoms, promising countermeasures are being evaluated. Our work focuses on understanding the inhalation toxicity of MIC to develop effective therapeutic interventions. However, in-vivo inhalation exposure studies are limited by challenges in estimating the actual respiratory dose, due to animal-to-animal variability in breathing rate, depth, etc. Therefore, a method was developed to estimate the inhaled MIC dose based on analysis of an N-terminal valine hemoglobin adduct. The method features a simple sample preparation scheme, including rapid isolation of hemoglobin, hydrolysis of the hemoglobin adduct with immediate conversion to methyl isopropyl hydantoin (MIH), rapid liquid-liquid extraction, and gas-chromatography mass-spectrometry analysis. The method produced a limit of detection of 0.05 mg MIH/kg RBC precipitate with a dynamic range from 0.05–25 mg MIH/kg. The precision, as measured by percent relative standard deviation, was \u3c8.5%, and the accuracy was within 8% of the nominal concentration. The method was used to evaluate a potential correlation between MIH and MIC internal dose and proved promising. If successful, this method may be used to quantify the true internal dose of MIC from inhalation studies to help determine the effectiveness of MIC therapeutics

    Porphyrin-Based SOD Mimic MnTnBu OE -2-PyP Inhibits Mechanisms of Aortic Valve Remodeling in Human and Murine Models of Aortic Valve Sclerosis

    No full text
    Background Aortic valve sclerosis ( AVS c), the early asymptomatic presentation of calcific aortic valve (AV) disease, affects 25% to 30% of patients aged \u3e65 years. In vitro and ex vivo experiments with antioxidant strategies and antagonists of osteogenic differentiation revealed that AVS c is reversible. In this study, we characterized the underlying changes in the extracellular matrix architecture and valve interstitial cell activation in AVSc and tested in vitro and in vivo the activity of a clinically approved SOD (superoxide dismutase) mimic and redox-active drug MnTnBu OE -2-PyP ( BMX -001). Methods and Results After receiving informed consent, samples from patients with AVS c, AV stenosis, and controls were collected. Uniaxial mechanical stimulation and in vitro studies on human valve interstitial cells were performed. An angiotensin II chronic infusion model was used to impose AV thickening and remodeling. We characterized extracellular matrix structures by small-angle light scattering, scanning electron microscopy, histology, and mass spectrometry. Diseased human valves showed altered collagen fiber alignment and ultrastructural changes in AVS c, accumulation of oxidized cross-linking products in AV stenosis, and reversible expression of extracellular matrix regulators ex vivo. We demonstrated that MnTnBu OE -2-PyP inhibits human valve interstitial cell activation and extracellular matrix remodeling in a murine model (C57 BL /6J) of AVS c by electron microscopy and histology. Conclusions AVS c is associated with architectural remodeling despite marginal effects on the mechanical properties in both human and mice. MnTnBu OE -2-PyP controls AV thickening in a murine model of AVS c. Because this compound has been approved recently for clinical use, this work could shift the focus for the treatment of calcific AV disease, moving from AV stenosis to an earlier presentation ( AVS c) that could be more responsive to medical therapies
    corecore