10 research outputs found
Bioelectrical phase angle values in a clinical sample of ambulatory rehabilitation patients
Background: Phase angle (PhA) is derived from the resistance and reactance measurements obtained from bioelectric impedance analysis (BIA) and is considered indicative of cellular health and membrane integrity. This study measured PhA values of rehabilitation patients and compared them to reference values, measures of functional ability and serum C-reactive protein (CRP) levels to explore their utility as a clinical tool to monitor disease progression and treatment efficacy. Methods: This cross-sectional observational study was conducted on 215 ambulatory rehabilitation patients aged 20 – 94 years. All participants had been hospitalised for a stroke, orthopaedic or other condition resulting in a functional limitation. PhA was derived from BIA analysis and functional ability characterised using the Functional Independence Measure (FIM), timed up and go (TUG) and maximal quadriceps strength (MQS). Serum levels of CRP were also collected. Results: Stroke patients had the highest PhA (5.3°) followed by elective orthopaedic surgery (5.0°) with the other group (4.3°) significantly lower than both previous categories (p < 0.001). Ambulatory rehabilitation patients' PhA values were dependent on age and sex (p < 0.001), lower than published age matched healthy reference values (p ≤ 0.05) and similar to other hospitalised or sick groups, but also higher than values reported in critically ill patients. Patients with CRP values less than 10 mg.L-1 had significantly (p = 0.005) higher mean PhA values. Furthermore, the highest functional status quartiles had significantly higher PhAs (p ≤ 0.04) for the FIM, MQS and TUG measures. Conclusion: The results suggest that the phase angles of rehabilitation patients are between those of healthy individuals and seriously ill patients, thereby supporting claims that PhA is indicative of general health status. Phase angles are a potentially useful indicator of functional status in patients commencing an ambulatory rehabilitation program with a normal hydration status.Simon M. Gunn, Julie A. Halbert, Lynne C. Giles, Jacqueline M. Stepien, Michelle D. Miller and Maria Crott
The impact of a meal, snack, or not eating during the night shift on simulated driving performance post-shift
Objective The commute home following a night shift is associated with an increased risk for accidents. This study investigated the relationship between food intake during the night shift and simulated driving performance post-shift.
Methods Healthy non-shift working males (N=23) and females (N=16), aged 18–39 years (mean 24.5, standard deviation 5.0, years) participated in a seven-day laboratory study and underwent four simulated night shifts. Participants were randomly allocated to one of three conditions: meal at night (N=12; 7 males), snack at night (N=13; 7 males) or no eating at night (N=14; 9 males). During the night shift at 00:30 hours, participants either ate a large meal (meal at night condition), a snack (snack at night condition), or did not eat during the night shift (no eating at night condition). During the second simulated night shift, participants performed a 40-minute York driving simulation at 20:00, 22:30, 01:30, 04:00, and 07:30 hours (similar time to a commute from work).
Results The effects of eating condition, drive time, and time-on-task, on driving performance were examined using mixed model analyses. Significant conditionĂ—time interactions were found, where at 07:30 hours, those in the meal at night condition displayed significant increases in time spent outside of the safe zone (percentage of time spent outside 10 km/hour of the speed limit and 0.8 meters of the lane center; P<0.05), and greater lane and speed variability (both P<0.01) compared to the snack and no eating conditions. There were no differences between the snack and no eating conditions.
Conclusion Driver safety during the simulated commute home is greater following the night shift if a snack, rather than a meal, is consumed during the shift
Subjective hunger, gastric upset, and sleepiness in response to altered meal timing during simulated shiftwork
Shiftworkers report eating during the night when the body is primed to sleep. This study investigated the impact of altering food timing on subjective responses. Healthy participants (n = 44, 26 male, age Mean ± SD = 25.0 ± 2.9 years, BMI = 23.82 ± 2.59kg/m2) participated in a 7-day simulated shiftwork protocol. Participants were randomly allocated to one of three eating conditions. At 00:30, participants consumed a meal comprising 30% of 24 h energy intake (Meal condition; n = 14, 8 males), a snack comprising 10% of 24 h energy intake (Snack condition; n = 14; 8 males) or did not eat during the night (No Eating condition; n = 16, 10 males). Total 24 h individual energy intake and macronutrient content was constant across conditions. During the night, participants reported hunger, gut reaction, and sleepiness levels at 21:00, 23:30, 2:30, and 5:00. Mixed model analyses revealed that the snack condition reported significantly more hunger than the meal group (p < 0.001) with the no eating at night group reporting the greatest hunger (p < 0.001). There was no difference in desire to eat between meal and snack groups. Participants reported less sleepiness after the snack compared to after the meal (p < 0.001) or when not eating during the night (p < 0.001). Gastric upset did not differ between conditions. A snack during the nightshift could alleviate hunger during the nightshift without causing fullness or increased sleepiness