198 research outputs found

    An increasing role for solvent emissions and implications for future measurements of volatile organic compounds : Solvent emissions of VOCs

    Get PDF
    Volatile organic compounds (VOCs) are a broad class of air pollutants which act as precursors to tropospheric ozone and secondary organic aerosols. Total UK emissions of anthropogenic VOCs peaked in 1990 at 2,840 kt yr -1 and then declined to approximately 810 kt yr -1 in 2017 with large reductions in road transport and fugitive fuel emissions. The atmospheric concentrations of many non-methane hydrocarbons (NMHC) in the UK have been observed to fall over this period in broadly similar proportions. The relative contribution to emissions from solvents and industrial processes is estimated to have increased from approximately 35% in 1990 to approximately 63% in 2017. In 1992, UK national monitoring quantified 19 of the 20 most abundant individual anthropogenic VOCs emitted (all were NMHCs), but by 2017 monitoring captured only 13 of the top 20 emitted VOCs. Ethanol is now estimated to be the most important VOC emitted by mass (in 2017 approx. 136 kt yr -1 and approx. 16.8% of total emissions) followed by n-butane (52.4 kt yr -1) and methanol (33.2 kt yr -1). Alcohols have grown in significance representing approximately 10% of emissions in 1990 rising to approximately 30% in 2017. The increased role of solvent emissions should now be reflected in European monitoring strategies to verify total VOC emission reduction obligations in the National Emissions Ceiling Directive. Adding ethanol, methanol, formaldehyde, acetone, 2-butanone and 2-propanol to the existing NMHC measurements would provide full coverage of the 20 most significant VOCs emitted on an annual mass basis. This article is part of a discussion meeting issue 'Air quality, past present and future'

    Variability of polycyclic aromatic hydrocarbons and their oxidative derivatives in wintertime Beijing, China

    Get PDF
    Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the diurnal variation and nocturnal abundance of 16 polycyclic aromatic hydrocarbons (PAHs), 10 oxygenated PAHs (OPAHs) and 9 nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using gas chromatography-time-of-flight mass spectrometry (GC-Q-ToF-MS). The total concentration of PAHs varied between 18 and 297 ngm-3 over 3 h daytime filter samples and from 23 to 165 ngm-3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ngm-3 (mean: 97±43 ngm-3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54 and 2.3 ngm-3, respectively. The most abundant PAHs were fluoranthene (33 ngm-3), chrysene (27 ngm-3), pyrene (27 ngm-3), benzo[a]pyrene (27 ngm-3), benzo[b]fluoranthene (25 ngm-3), benzo[a]anthracene (20 ngm-3) and phenanthrene (18 ngm-3). The most abundant OPAHs were 9,10-anthraquinone (18 ngm-3), 1,8-naphthalic anhydride (14 ngm-3) and 9-fluorenone (12 ngm-3), and the three most abundant NPAHs were 9-nitroanthracene (0.84 ngm-3), 3-nitrofluoranthene (0.78 ngm-3) and 3-nitrodibenzofuran (0.45 ngm-3). Σ PAHs and Σ OPAHs showed a strong positive correlation with the gas-phase abundance of NO, CO, SO2 and HONO, indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources of PAHs in Beijing and also revealed the main source of NPAHs to be secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas-phase HONO. 9- Nitroanthracene appeared to undergo a photodegradation during the daytime and showed a strong positive correlation with ambient HONO (R D 0:90, P <0:001). The lifetime excess lung cancer risk for those species that have available toxicological data (16 PAHs, 1 OPAH and 6 NPAHs) was calculated to be in the range 10-5 to 10-3 (risk per million people ranges from 26 to 2053 cases per year)

    Estimated Exposure Risks from Carcinogenic Nitrosamines in Urban Airborne Particulate Matter

    Get PDF
    Organic nitrogen (ON) compounds are present in atmospheric particulate matter (PM), but compared to their inorganic, hydrocarbon and oxygenated counterparts, they are difficult to characterize due to their complex chemical composition. Nitrosamines are a class of ON compounds known to be highly carcinogenic, and include species formed from nicotine degradation, but there are no detailed estimates of their abundance in ambient air. We use a highly sensitive analytical method, which is capable of separating over 700 ON compounds, to determine daily variability in nicotine, and 8 non specific and 4 tobacco specific nitrosamines in ambient PM from central London over two periods in winter and summer. The average total nitrosamine concentration was 5.2 ng m-3, substantially exceeding a current public recommendation of 0.3 ng m-3 on a daily basis. The lifetime cancer risk from nitrosamines in urban PM exceeded the U.S. Environmental Protection Agency guideline of 1 excess cancer cases per 1 million population exposed after 1 hour of exposure to observed concentrations per day over the duration of an adult lifetime. A clear relationship between ambient nitrosamines and total PM2.5 was observed with 1.2 ng m-3 ± 2.6 ng m-3 (total nitrosamine) per 10 µg m-3 PM2.5

    Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers

    Get PDF
    In addition to passive inhalation, non-smokers, and especially children, are exposed to residual tobacco smoke gases and particles that are deposited to surfaces and dust, known as thirdhand smoke (THS). However, until now the potential cancer risks of this pathway of exposure have been highly uncertain and not considered in public health policy. In this study, we estimate for the first time the potential cancer risk by age group through non-dietary ingestion and dermal exposure to carcinogen N-nitrosamines and tobacco-specific nitrosamines (TSNAs) measured in house dust samples. Using a highly sensitive and selective analytical approach we have determined the presence of nicotine, eight N-nitrosamines and five tobacco-specific nitrosamines in forty-six settled dust samples from homes occupied by both smokers and non-smokers. Using observations of house dust composition, we have estimated the cancer risk by applying the most recent official toxicological information. Calculated cancer risks through exposure to the observed levels of TSNAs at an early life stage (1 to 6. years old) exceeded the upper-bound risk recommended by the USEPA in 77% of smokers' and 64% of non-smokers' homes. The maximum risk from exposure to all nitrosamines measured in a smoker occupied home was one excess cancer case per one thousand population exposed.The results presented here highlight the potentially severe long-term consequences of THS exposure, particularly to children, and give strong evidence of its potential health risk and, therefore, they should be considered when developing future environmental and health policies

    The import and export of organic nitrogen species at a Scottish ombrotrophic peatland

    Get PDF
    Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget, but is not routinely measured in precipitation or stream water. In order to investigate the contribution of DON to the deposition and export of N, precipitation, stream and soil water samples were collected from an ombrotrophic peatland and analysed for DON over a 2-year period. In wet-only deposition DON contributed up to 10 % of the total dissolved nitrogen (TDN) and was the most dominant fraction in soil water (99 %) and stream water (75 %). NH4 + was the most dominate form of N in precipitation, with NO3 - contributing the least to precipitation, soil water and stream water. Precipitation and stream DON were qualitatively analysed by a two-dimensional gas chromatograph coupled to a nitrogen chemiluminescence detector (GC × GC-NCD) after trapping onto C18 solid phase extraction (SPE) cartridges. Ten unique compounds were detected and five identified as pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine. Five compounds were present in both precipitation and stream samples: pyrrole, benzonitrile and three unidentified compounds. The SPE-extraction efficiency for DON was very low (11 %), but with improvements DON speciation could become a valuable tool to provide information on its sources and pathways and inform chemical transport models

    Sources of non-methane hydrocarbons in surface air in Delhi, India

    Get PDF
    Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2–C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35–1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi

    The Effect of Varying Engine Conditions on Unregulated VOC Diesel Exhaust Emissions

    Get PDF
    Abstract. An extensive set of measurements were performed to investigate the effect of different engine conditions (i.e. load, speed, temperature, "driving scenarios") and emission control devices (with/without diesel oxidative catalyst, DOC) on the composition and abundance of unregulated exhaust gas emissions from a light-duty diesel engine. Exhaust emissions were introduced into an atmospheric chamber and measured using thermal desorption comprehensive two-dimensional gas chromatography coupled to a flame ionisation detector (TD-GC×GC-FID). In total, 16 individual and 8 groups of volatile organic compounds (VOCs) were measured in the exhaust gas, ranging from volatile to intermediate volatility. The total speciated VOC (∑SpVOC) emission rates varied significantly with different engine conditions, ranging from 70 to 9268 milligrams of VOC mass per kilogram of fuel burnt (mg kg-1). ∑SpVOC emission rates generally decreased with increasing engine load and temperature, and to a lesser degree, engine speed. The exhaust gas composition changed as a result of two main influencing factors, the DOC hydrocarbon (HC) removal efficiency and engine combustion efficiency. Increased DOC HC removal efficiency and engine combustion efficiency resulted in a greater percentage contribution of the C7 to C12 branched aliphatics and C7 to C12 n-alkanes, respectively, to the ∑SpVOC emission rate. The investigated DOC removed 46 ± 10 % of the ∑SpVOC emissions, with removal efficiencies of 83 ± 3 % for the single-ring aromatics and 39 ± 12 % for the aliphatics (branched and straight-chain). The DOC aliphatic removal efficiency generally decreased with increasing carbon chain length. The emission factors of n-nonane to n-tridecane were compared with on-road diesel emissions from a highway tunnel in Oakland California. Comparable emission factors were from experiments with relatively high engine loads and speeds, engine conditions which are consistent with the driving conditions of the on-road diesel vehicles. Emission factors from low engine loads and speeds (e.g. cold-start) showed no agreement with the on-road diesel emissions as expected, with the emission factors observed to be 2 to 8 times greater. To our knowledge, this is the first study which has explicitly discussed the effect of the DOC HC removal efficiency and combustion efficiency on the exhaust gas composition. With further work, compositional differences in exhaust gas emissions as a function of engine temperature, could be implemented into air-quality models, resulting in improved refinement and better understanding of diesel exhaust emissions on local air quality. </jats:p

    Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry : Cooking Emissions

    Get PDF
    Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed

    Overcoming the lack of authentic standards for the quantification of biogenic secondary organic aerosol markers

    Get PDF
    Liquid chromatography coupled to electrospray ionisation high resolution mass spectrometry is an extremely powerful technique for both targeted and non-targeted analysis of organic aerosol. However, quantification of biogenic secondary organic aerosol species (BSOA) is hindered by a lack of commercially available authentic standards. To overcome the lack of authentic standards, this study proposes a quantification method based on the prediction of relative ionisation efficiency (RIE) factors to correct concentrations obtained via calibration using a proxy standard. RIE measurements of 89 commercially available standards were made relative to cis-pinonic acid and coupled to structural descriptors. A regularised random forest predictive model was developed using the authentic standards (R2 = 0.66, RMSE = 0.59). The model was then used to predict the RIE’s of 87 biogenic organic acid markers from α-pinene, limonene and β-caryophyllene without available authentic standards. The predicted RIE’s ranged from 0.27 to 13.5, with a mean ± standard deviation of 4.2 ± 3.9. 25 markers were structurally identified in chamber samples and ambient aerosol filter samples collected in summertime Beijing. The markers were quantified using a cis-pinonic acid calibration and then corrected using the predicted RIE factors. This resulted in the average BSOA concentration decreasing from 146 ng m−3 to 51 ng m−3, respectively. This change in concentration is highlighted to have an impact on the types of average aerosol metrics commonly used to describe bulk composition. This study is the first of its kind to use predicted ionisation efficiency factors to overcome known differences in BSOA concentrations due to the inherent lack of authentic standards in aerosol chemistry
    • …
    corecore